资源资源简介:
免费江苏省2017年中考数学模拟试卷含答案中考数学试卷分类汇编2017年中考数学模拟试卷一、选择题1.的相反数是()A.3 B.﹣3 C. D.﹣2.下列运算错误的是()A.=2 B.(﹣x3)2=x6 C.6x+2y=8xy D.3.若反比例函数的图象经过点(﹣2,3),则该反比例函数图象一定经过点()A.(2,﹣3) B.(﹣2,﹣3) C.(2,3) D.(﹣1,﹣6)4.校篮球队所买10双运动鞋的尺码统计如表:尺码(cm) 25 25.5 26 26.5 27购买量(双) 1 1 2 4 2则这10双运动鞋尺码的众数和中位数分别为()A.4cm,26cm B.4cm,26.5cmC.26.5cm,26.5cm D.26.5cm,26cm5.实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5 B.2.5﹣a C.a+2.5 D.﹣a﹣2.56.能说明命题“关于x的一元二次方程x2+mx+4=0,当m<﹣2时必有实数解”是假命题的一个反例为()A.m=﹣4 B.m=﹣3 C.m=﹣2 D.m=47.为治理大气污染,保护人民健康.某市积极行动,调整产业结构,压减钢铁生产总量,2013年某市钢铁生产量为9700万吨,计划到2015年钢铁生产量设定为5000万吨,设该市每年钢铁生产量平均降低率为x,依题意,下面所列方程正确的是()A.9700(1﹣2x)=5000 B.5000(1+x)2=9700C.5000(1﹣2x)=9700 D.9700(1﹣x)2=50008.如图,矩形ABCD中,AD=2AB,E、F、G、H分别是AB,BC,CD,AD边上的点,EG⊥FH,FH=2,则四边形EFGH的面积为()二、填空题9.半径为6cm,圆心角为120°的扇形的面积为.10.若二次根式是最简二次根式,则最小的正整数a=.11.刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年岁.12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x … ﹣1 0 1 2 3 …y … 10 5 2 1 2 …则当y<5时,x的取值范围是.13.如图,已知△ABC三个内角的平分线交于点O,延长BA到点D,使AD=AO,连接DO,若BD=BC,∠ABC=54°,则∠BCA的度数为°.14.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为cm2.15.如图,两个同心圆,若大圆的弦AB与小圆相切,大圆半径为10,AB=16,则小圆的半径为.16.如图,已知△ABC中,AB=AC=1,∠BAC=120°,将△ABC绕点C顺时针旋转90°,得到△A′B′C,则点B运动的路径长为(结果保留π)17.如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是这两个正方形的中心,则阴影部分的面积为.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)18.解不等式组;(2)先化简,再求值:÷(a﹣1﹣),其中a是方程x2+x=6的一个根.19.人民网为了解百姓对时事政治关心程度,特对18~35岁的青年人每天发微博数量进行调查,设一个人的“日均发微博条数”为m,规定:当m≥10时为甲级,当5≤m<10时为乙级,当0≤m<5时为丙级,现随机抽取20个符合年龄条件的青年人开展调查,所抽青年人的“日均发微博条数”的数据如下:0828101375731210711368141512(1)样本数据中为甲级的频率为;(直接填空)(2)求样本中乙级数据的中位数和众数.(3)从样本数据为丙级的人中随机抽取2人,用列举法或树状图求抽得2个人的“日均发微博条数”都是3的概率.20.从南京站开往上海站的一辆和谐号动车,中途只停靠苏州站,甲、乙、丙3名互不相识的旅客同时从南京站上车.(1)求甲、乙、丙三名旅客在同一个站下车的概率;(2)求甲、乙、丙三名旅客中至少有一人在苏州站下车的概率.21.如图,小明在大楼45米高(即PH=45米,且PH⊥HC)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:.(点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上)(1)∠PBA的度数等于度;(直接填空)(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.414,≈1.732).22.(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4.①求∠ABC的度数;②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;(2)如图2,已知?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.23.甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.24.如图,已知关于x的二次函数y=x2+mx的图象经过原点O,并且与x轴交于点A,对称轴为直线x=1.(1)常数m=,点A的坐标为;(2)若关于x的一元二次方程x2+mx=n(n为常数)有两个不相等的实数根,求n的取值范围;(3)若关于x的一元二次方程x2+mx﹣k=0(k为常数)在﹣2<x<3的范围内有解,求k的取值范围.参考答案一、选择题1.A2.B3.A4.C5.C6.B7.A8.D二、填空题9.半径为6cm,圆心角为120°的扇形的面积为12π.10.若二次根式是最简二次根式,则最小的正整数a=2.11.答案为31.12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x … ﹣1 0 1 2 3 …y … 10 5 2 1 2 …则当y<5时,x的取值范围是0<x<4.13.如图,已知△ABC三个内角的平分线交于点O,延长BA到点D,使AD=AO,连接DO,若BD=BC,∠ABC=54°,则∠BCA的度数为42°.14.已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为30πcm2.15.如图,两个同心圆,若大圆的弦AB与小圆相切,大圆半径为10,AB=16,则小圆的半径为616.如图,已知△ABC中,AB=AC=1,∠BAC=120°,将△ABC绕点C顺时针旋转90°,得到△A′B′C,则点B运动的路径长为π(结果保留π)17.如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是这两个正方形的中心,则阴影部分的面积为ab.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)18【解答】解:(1),由①得:x≥﹣1,由②得:x<3,则不等式组的解集为:﹣1≤x<3;(2)原式=÷=?=,方程x2+x=6,解得:x=﹣3或x=2(舍去),当a=x=﹣3时,原式=﹣.19.学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.(1)学校采用的调查方式是抽样调查;学校在各班随机选取了100名学生;(2)补全统计图中的数据:羽毛球21人、乒乓球18人、其他25人、其他25%;(3)该校共有1100名学生,请估计喜欢“篮球”的学生人数.【解答】解:(1)学校采用的调查方式是抽样调查;由题意可得:喜欢篮球的人数为:36人,所占比例为:36%,所以学校在各班随机选取了学生:36÷36%=100(名);(2)喜欢羽毛球人数为:100×21%=21(人),喜欢乒乓球人数为:100×18%=18(人),其他所占百分比为:1﹣36%﹣21%﹣18%=25%,喜欢其它人数为:100×25%=25(人),如图所示:(3)根据题意得:36%×1100=396,即估计喜欢“篮球”的学生人数为396人.故答案为:(1)抽样调查;100;(2)21,18,25,25.20.从南京站开往上海站的一辆和谐号动车,中途只停靠苏州站,甲、乙、丙3名互不相识的旅客同时从南京站上车.(1)求甲、乙、丙三名旅客在同一个站下车的概率;(2)求甲、乙、丙三名旅客中至少有一人在苏州站下车的概率..【解答】解:(1)画树状图得:∵共有8种等可能的结果,甲、乙、丙三名旅客在同一个站下车的有2种情况,∴甲、乙、丙三名旅客在同一个站下车的概率为:=;(2)∵甲、乙、丙三名旅客中至少有一人在苏州站下车的有7种情况;∴甲、乙、丙三名旅客中至少有一人在苏州站下车的概率为:.21.写出下列命题的已知、求证,并完成证明过程.命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.已知:如图,在□ABCD中,对角线AC平分∠DAB(或∠DCB).求证:□ABCD是菱形.证明:【解答】命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.已知:在四边形ABCD中,对角线AC平分∠DAB(或∠DCB).求证:四边形ABCD是菱形,证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠BCA.∵对角线AC平分∠DAB,∴∠DAC=∠BAC.∴∠BCA=∠BAC.∴BA=BC.∴四边形ABCD是菱形.22.(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4.①求∠ABC的度数;②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;(2)如图2,已知?ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.【解答】(1)解:①连结OA、OC,如图1,∵OA=OC=4,AC=4,∴OA2+OC2=AC2,∴△OCA为等腰直角三角形,∠AOC=90°,∴∠ABC=∠AOC=45°;②直线PC与⊙O相切.理由如下:∵AP是⊙O的切线,∴∠OAP=90°,而∠AOC=90°,∴AP∥OC,而AP=OC=4,∴四边形APCO为平行四边形,∵∠AOC=90°,∴四边形AOCP为矩形,∴∠PCO=90°,∴PC⊥OC,∴PC为⊙O的切线;(2)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠A=180°,∠DCE=∠B,∵∠E+∠A=180°,∴∠E=∠B,∴∠DCE=∠E,∴DC=DE.23.(1)如图1,4条直线l1、l2、l3、l4是一组平行线,相邻2条平行线的距离都是2cm,正方形ABCD的4个顶点A、B、C、D分别在l1、l3、l4、l2上,求该正方形的面积;(2)如图2,把一张矩形卡片ABCD放在每格宽度为18mm的横格纸中,恰好四个顶点都在横格线上,已知∠1=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)【解答】解:(1)如图1,作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵四边形ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,在△ADE和△DCF,,∴△ADE≌△DCF(AAS),∴CF=DE=2.∵DF=4,∴CD2=22+42=20,即正方形ABCD的面积为20cm2;(2)如图2,作BE⊥l于点E,DF⊥l于点F.∵∠1+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=∠1=36°,根据题意,得BE=36mm,DF=72mm.在Rt△ABE中,sin∠1=,∴AB==60mm,在Rt△ADF中,cos∠ADF=,∴AD=mm=90mm.∴矩形ABCD的周长=2(60+90)=300mm.24.甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.【解答】解:(1)∵购买商品的总金额满100元但不足200元,少付50元;∴优惠金额为50元,∴P=(100≤x<200),p随x的增大而减小;(2)在100≤x<200的范围内,取x>125的值时,都是选乙超市花钱较少,如:当x=130时,在甲超市花130﹣50=80(元);在乙超市花130×0.6=78(元),注:在其它范围也可,说甲不是“打5折”也可.(3)当300≤x<400时在甲超市购买商品应付款y1=x﹣150,在乙超市购买商品应付款y2=0.6x.分三种情况:①x﹣150=0.6x时,即x=375,在两家商场购买商品花钱一样;②当x﹣150>0.6x时,即375<x<400,在乙商场购买商品花钱较少;③当x﹣150<0.6x时,即300≤x<375,在甲商场购买商品花钱较少.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。