资源资源简介:
免费江苏省2017年中考数学《第7课时一元二次方程及及应用》练习含解析考点分类汇编第二章方程(组)与不等式(组)第7课时一元二次方程及其应用(建议答题时间:60分钟)基础过关1.(2016厦门)方程x2-2x=0的根是()A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=-22.(2016昆明)一元二次方程x2-4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.(2016新疆)一元二次方程x2-6x-5=0配方后可变形为()A.(x-3)2=14B.(x-3)2=4C.(x+3)2=14D.(x+3)2=44.(2016潍坊)关于x的一元二次方程x2-2x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°5.(2016绵阳)若关于x的方程x2-2x+c=0有一根为-1,则方程的另一根为()A.-1B.-3C.1D.36.(2016烟台)若x1,x2是一元二次方程x2-2x-1=0的两个根,则x21-x1+x2的值为()A.-1B.0C.1D.37.(2016青海)已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A.8B.10C.8或10D.128.(2016衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆.设2013年底至2015年底该市汽车拥有量的年平均增长率为x.根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1-x)2=16.9D.10(1-2x)=16.99.(2016兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少1m,另一边减少了2m,剩余空地第9题图的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x2-3x+16=0C.(x-1)(x-2)=18D.x2+3x+16=010.(2016黄石)关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是__________.11.(2016宜宾)已知一元二次方程x2+3x-4=0的两根为x1、x2,则x21+x1x2+x22=________.12.(2017原创)某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价________元.13.(2016安徽)解方程:x2-2x=4.14.(2016山西)解方程:2(x-3)2=x2-9.15.(2016宿迁一模)已知关于x的方程mx2-(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.16.(2015襄阳)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?第16题图满分冲关1.(2016河北)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为02.(2016包头)若关于x的方程x2+(m+1)x+12=0的一个实数根的倒数恰是它本身,则m的值是()2-1-c-n-j-yA.-52B.12C.-52或12D.13.(2016广州)定义新运算:a★b=a(1-b),若a,b是方程x2-x+14m=0(m<1)的两根,则b★b-a★a的值为()A.0B.1C.2D.与m有关4.(2016大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1-ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>NB.M=NC.M<ND.不确定5.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有________人.6.(2015毕节)一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L.则每次倒出的液体是________L.第7题图7.如图,将矩形沿图中虚线(其中x>y)剪成①②③④四块图形,用这四块图形恰能拼成一个正方形,若y=2,则x的值等于________.8.(2016宜昌)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B品牌产销线,以满足市场对蛋糕的多元需求.B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增;且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年A,B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.9.(2016荆州)已知在关于x的分式方程k-1x-1=2①和一元二次方程(2-k)x2+3mx+(3-k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1-k)+x2(x2-k)=(x1-k)(x2-k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.答案基础过关1.C【解析】用因式分解法解一元二次方程便可.x(x-2)=0,x=0或x-2=0,∴x1=0,x2=2.2.B【解析】根据一元二次方程根的判别式可进行判断.b2-4ac=(-4)2-4×4=0,即方程有两个相等的实数根.3.A【解析】x2-6x-5=0,x2-6x=5,x2-6x+9=5+9,(x-3)2=14.4.B【解析】∵方程有两个相等的实数根,∴b2-4ac=2-4sinα=0,∴sinα=12,∴α=30°.5.D【解析】设方程的另一个根为x2,则根据根与系数关系有-1+x2=2,解得x2=3.6.D【解析】由题意可得x21-2x1-1=0,x1+x2=2,即x21-2x1=1,所以原式=x21-2x1+(x1+x2)=1+2=3.7.B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4>2,符合三边关系.∴三角形的周长为10.8.A【解析】由年平均增长率为x,从2013年到2015年连续增长两年,开始量为10万辆,结束量为16.9万辆,可列方程10(x+1)2=16.9.9.C【解析】∵原正方形空地的边长为xm,剩余空地的长为(x-1)m,宽为(x-2)m,∴可列方程为:(x-2)(x-1)=18.10.m>12【解析】一元二次方程两实数根之积为负,则方程应满足条件b2-4ac>0x1·x2=ca<0,即4-4(1-2m)>01-2m<0,解得m>12.11.13【解析】∵一元二次方程x2+3x-4=0的两根是x1、x2,∴x1+x2=-3,x1x2=-4,∴x21+x1x2+x22=x21+2x1x2+x22-x1x2=(x1+x2)2-x1x2=(-3)2-(-4)=9+4=13.12.4【解析】设每件应降价x元,根据题意得:(44-x)(20+5x)=1600,解得:x1=4,x2=36(不合题意,舍去),则每件应降价4元.13.解:方程两边都加1,得x2-2x+1=4+1,即(x-1)2=5,开平方,得x-1=±5,∴原方程的解是x1=1+5,x2=1-5.14.解:原方程可化为2(x-3)2=(x+3)(x-3),2(x-3)2-(x+3)(x-3)=0,(x-3)[2(x-3)-(x+3)]=0,(x-3)(x-9)=0,∴x-3=0或x-9=0,∴x1=3,x2=9.【一题多解】原方程可化为x2-12x+27=0,这里a=1,b=-12,c=27,∵b2-4ac=(-12)2-4×1×27=36>0,∴x=-b±b2-4ac2a=12±362×1=12±62,∴原方程的根为x1=3,x2=9.15.(1)证明:∵m≠0,b2-4ac=(m+2)2-4m×2=m2-4m+4=(m-2)2,而(m-2)2≥0,即b2-4ac≥0,∴方程总有两个实数根;(2)解:(x-1)(mx-2)=0,x-1=0或mx-2=0,∴x1=1,x2=2m,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.16.解:设矩形猪舍垂直于住房墙一边长为xm,可以得出平行于墙的一边的长为(25-2x+1)m,【由题意,得x(25-2x+1)=80,化简,得x2-13x+40=0,解得:x1=5,x2=8.当x=5时,26-2x=16>12(舍去);当x=8时,26-2x=10<12.答:所围矩形猪舍的长为10m、宽为8m时,猪舍面积为80m2.满分冲关1.B【解析】∵(a-c)2>a2+c2,∴ac<0,∴-4ac>0,∴b2-4ac>0,∴该方程有两个不相等的实数根.2.C【解析】∵倒数等于它本身的数是±1,∴方程的一个根为1或-1.把x=1代入方程,得1+m+1+12=0,解得m=-52,把x=-1代入方程,得1-m-1+12=0,解得m=12,∴m的值是-52或12.3.A【解析】∵a,b是方程x2-x+14m=0(m<1)的两根,∴a+b=1,ab=14m,∴b★b-a★a=b(1-b)-a(1-a)=b(a+b-b)-a(a+b-a)=ab-ab=0.4.B【解析】∵x0是方程ax2+2x+c=0的一个根,∴ax20+2x0+c=0,∴N-M=(ax0+1)2-(1-ac)=a2x20+2ax0+1-1+ac=a(ax20+2x0+c)=0,∴M=N.5.10【解析】设参加这次聚会的同学一共有x人,则每人应握(x-1)次手,由题意得:12x(x-1)=45,即:x2-x-90=0,解得:x1=10,x2=-9(不符合题意舍去),故参加这次聚会的同学共有10人.6.20【解析】设每次倒出xL液体,根据题意列方程得40-x-40-x40x=10,解得x1=20,x2=60(舍去).故每次倒出20L液体.7.5+1【解析】∵相似三角形对应边成比例,∴x-yy=xx+y,∵y=2,∴x2-2x-4=0.解得:x1=1-5(舍去),x2=5+1,故答案为:5+1.8.解:(1)A品牌产销线2018年的销售量为9.5-(2018-2015)×0.5=8(万份);(2)设A品牌产销线平均每份获利的年递减百分比为x,B品牌产销线的年销售量递增相同的份数为k万份,依题意可列:(9.5-0.5)+(1.8+k)=11.4(1.8+2k)·3(1+2x)2=10.89,解得:k=0.6x=5%或k=0.6x=-105%(舍去),∴k=0.6x=5%,∴2x=10%,答:B品牌产销线2016年平均每份获利增长的百分数为10%.9.解:(1)解①得,x=k+12.依题意,有x≥0x≠1,即k+12≥0k+12≠1,∵②为一元二次方程,∴k≠2,解得k≥-1且k≠1,k≠2.综上所述,k的取值范围是k≥-1,k≠1且k≠2;(2)∵k=m+2,n=1,∴方程可变为mx2-3mx+m-1=0.若m=0,即-1=0,不合题意,所以m≠0.∵方程有两个根,∴b2-4ac≥0,即(-3m)2-4m(m-1)≥0,解得:m≥0或m≤-45,由根与系数的关系,得x1+x2=3,x1x2=1-1m.∵k为整数,k=m+2,∴m也为整数.∵方程②有两个整数根x1、x2,∴m=±1.由(1)得m≠-1,∴m=1.此时b2-4ac=9>0.当m=1时,原方程为x2-3x=0.解得x1=0,x2=3.(3)成立.理由:∵k为负整数,而k≥-1,k≠1且k≠2,∴k=-1.当k=-1时,有x1(x1+1)+x2(x2+1)=(x1+1)(x2+1),∴(x1+x2)2-3x1x2-1=0.当k=-1时,方程变形为3x2+3mx+4n=0.∴(-m)2-3·4n3-1=0,即m2=4n+1.依题意,方程3x2+3mx+4n=0的Δ≥0.即9m2-4×3×4n≥0.∴m2≥16n3.∴4n+1≥16n3.解得n≤34,∴m2≤4.∴|m|≤2成立.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。