资源资源简介:
免费江苏省镇江市中考数学二模试卷含答案解析中考数学试题试卷网2016年江苏省镇江市中考数学二模试卷一、填空题1.﹣2的相反数是.2.计算:(﹣2)×(﹣)=.3.函数y=﹣1中,自变量x的取值范围是.4.若代数式的值为零,则x=.5.分解因式:x3﹣x=.6.小明同学参加射击训练,共设计了八发子弹,环数分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是.7.比较大小:(填">"、"<"或"=")8.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b的值等于.9.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=82°,则∠B=°.10.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是.11.若m、n互为倒数,则mn2﹣(n﹣1)的值为.12.如图,把面积为a的正三角形ABC的各边依次循环延长一倍,顺次连接这三条线段的外端点,这样操作后,可以得到一个新的正三角形DEF;对新三角形重复上述过程,经过2016次操作后,所得正三角形的面积是.二、选择题13.二次函数y=x2+4x+7的最小值是()A.3 B.4 C.6 D.714.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2 D.a2+b2=c215.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A. B. C.D.16.我国古代数学名著《数书九章》有"米谷粒分"题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.1365石 B.388石 C.169石 D.134石17.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为1.5的正方形卡片放在棋盘上,被这块卡片覆盖了一部分或全部的小方格共有n个,则n的最大值是()A.4 B.6 C.10 D.12三、解答题18.计算:|1﹣|+()﹣1﹣2cos30°.(2)化简:﹣.19.(6分)解下列方程:(1)=;(2)2x=3﹣x2.20.(8分)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.21.(6分)国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)22.(6分)为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,请完成下列问题:(1)周三没有被选择的概率;(2)选择2天恰好为连续两天的概率.23.(6分)如图,已知一次函数y=ax﹣2的图象与反比例函数y=的图象交于A(k,a),B两点.(1)求a,k的值;(2)求B点的坐标;(3)不等式ax<﹣2的解集是(直接写出答案)24.(7分)在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=8cm,sinA=,求⊙O的半径的长.25.(7分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.26.(9分)如图,在△ABC中,∠ACB=90°,AC=BC,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.(1)求证:△ACE∽△BFC;(2)试探究AF、BE、EF之间有何数量关系?说明理由.27.(10分)如图,为了保护运河入江口的古桥OA,规划建一座新桥BC,已知,古桥OA与河岸OC垂足,新桥BC与河岸AB垂直,且BC=AB,OC=210m,tan∠BCO=.(1)分别求古桥OA与新桥BC的长;(2)根据规划,建新桥的同时,将对古桥设立一个保护区,要求:保护区的边界为与BC相切的圆,且圆心M在线段OA上;古桥两端O和A到该圆上任意一点的距离不少于140m,设圆形保护区半径为R.OM=xm.①试求半径R与x的关系式;②试探究:当x多长时,圆形保护区的面积最大?并求出最大面积时R的值.28.(10分)如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)整个运动过程中,以点P、O、Q为顶点的三角形与Rt△AOB有几次相似?请直接写出相应的t值.(3)t为何值时,△POQ的面积最大?最大值是多少?2016年江苏省镇江市中考数学二模试卷参考答案与试题解析一、填空题1.﹣2的相反数是2.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上"﹣"号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上"﹣"号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.计算:(﹣2)×(﹣)=3.【考点】有理数的乘法.【分析】有理数乘法法则:两数相乘,同号得正,依此计算即可求解.【解答】解:(﹣2)×(﹣)=3.故答案为:3.【点评】考查了有理数的乘法,方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.3.函数y=﹣1中,自变量x的取值范围是x≥0.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式的意义,被开方数不能为负数,据此求解.【解答】解:根据题意,得x≥0.故答案为:x≥0.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.若代数式的值为零,则x=﹣1.【考点】分式的值为零的条件.【分析】分式的值为零时,分子x+1=0.【解答】解:依题意得:x+1=0,解得x=﹣1.当x=﹣1时,x﹣2=﹣3≠0,符合题意.故答案是:﹣1.【点评】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.5.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.6.小明同学参加射击训练,共设计了八发子弹,环数分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是8.5.【考点】中位数.【分析】首先将数据按从小到大排列,进而找出最中间求出答案.【解答】解:数据从小到大排列为:7,7,8,8,9,9,9,10,则最中间为:8和9,故这组数据的中位数是:(8+9)÷2=8.5.故答案为:8.5.【点评】此题主要考查了中位数,正确把握中位数的定义是解题关键.7.比较大小:>(填">"、"<"或"=")【考点】实数大小比较;通分;二次根式的性质与化简.【分析】通分得出=,=,根据5和11的大小推出5﹣5>6,即可得出答案.【解答】解:∵=,=,5==,11=,∴﹣5>﹣5,即5﹣5>6,∴>,故答案为:>.【点评】本题考查了通分、二次根式的性质、实数的大小比较等知识点的应用,关键是找出巧妙的方法比较两个数的大小,注意发现比较两实数的大小的技巧性.8.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b的值等于﹣3.【考点】一次函数图象上点的坐标特征.【分析】直接把点P(a,b)代入一次函数y=4x+3,求出4a﹣b的值,代入代数式进行计算即可.【解答】解:∵点P(a,b)在一次函数y=4x+3的图象上,∴4a+3=b,∴4a﹣b=﹣3,故答案是:﹣3.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=82°,则∠B=49°.【考点】平行线的性质.【分析】由∠BAC=82°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.【解答】解:∵∠BAC=82°,∴∠EAC=98°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=49°,∵AD∥BC,∴∠B=∠EAD=49°.故答案为:49.【点评】本题考查了平行线的性质,解答本题的关键是掌握角平分线的性质及平行线的性质:两直线平行内错角、同位角相等,同旁内角互补.10.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是9.【考点】三角形中位线定理;梯形.【分析】延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【解答】解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.故答案为:9.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.11.若m、n互为倒数,则mn2﹣(n﹣1)的值为1.【考点】代数式求值;倒数.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;12.如图,把面积为a的正三角形ABC的各边依次循环延长一倍,顺次连接这三条线段的外端点,这样操作后,可以得到一个新的正三角形DEF;对新三角形重复上述过程,经过2016次操作后,所得正三角形的面积是72016a.【考点】等边三角形的性质.【分析】连接CD、AE、BF,利用同底等高的三角形面积相等,可得S△ABC=S△BDC=S△CDE=a,同理:S△ABC=S△ACE=S△AEF=a、S△ABC=S△ABF=S△BDF=a,再利用S△DEF等于7个三角形面积之和,即可求得第一次操作后所得正三角形面积,同理即可得经过2016次操作后,所得正三角形的面积.【解答】解:如图,连接CD、AE、BF,∵AB=BD,∴S△ABC=S△BDC,又∵BC=CE,∴S△BCD=S△CDE,∴S△ABC=S△BDC=S△CDE=a,同理:S△ABC=S△ACE=S△AEF=a,S△ABC=S△ABF=S△BDF=a,∴第一次操作后,S△DEF=7a,∴同理,经过2016次操作后,所得正三角形的面积是72016a,故答案为:72016a.【点评】本题考查了三角形面积、同底等高的三角形面积相等.关键是作辅助线,构造同底等高的三角形.二、选择题13.二次函数y=x2+4x+7的最小值是()A.3 B.4 C.6 D.7【考点】二次函数的最值.【分析】本题考查利用二次函数顶点式求最小(大)值的方法.【解答】解:∵原式可化为y=x2+4x+4+3=(x+2)2+3,∴最小值为3.故选:A.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.14.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2 D.a2+b2=c2【考点】由三视图判断几何体.【分析】由三视图知道这个几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形.【解答】解:根据勾股定理,a2+b2=c2.故选:D.【点评】本题由物体的三种视图推出原来几何体的形状,考查了圆锥的高,母线和底面半径的关系.15.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A. B. C.D.【考点】动点问题的函数图象.【分析】首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1<x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【解答】解:①当点P在BC上时,此时0≤x≤1,∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积y=×AB×BP=×2x=x;②当点P在CD上时,此时1<x≤3,△ABP的高是1,底边是2,所以面积是1,即y=1;综上,当0≤x≤1时,y=x是正比例函数,且y随x的增大而增大,当1<x≤3时,y=1是一个常数函数,是一条平行于x轴的直线.故选:B.【点评】此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.16.我国古代数学名著《数书九章》有"米谷粒分"题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.1365石 B.388石 C.169石 D.134石【考点】用样本估计总体.【分析】由条件"数得254粒内夹谷28粒"即可估计这批米内夹谷约多少.【解答】解:由题意可知:这批米内夹谷约为1534×≈169石,故选C.【点评】本题考查了用样本估计总体,用样本估计总体是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.17.一个围棋盘由18×18个边长为1的正方形小方格组成,一块边长为1.5的正方形卡片放在棋盘上,被这块卡片覆盖了一部分或全部的小方格共有n个,则n的最大值是()A.4 B.6 C.10 D.12【考点】正方形的性质.【分析】要n取最大值,就让边长为1.5的正方形卡片边与小方格的边成一定角度.【解答】解:∵卡片的边长为1.5,∴卡片的对角线长为2<<3,且小方格的对角线长<1.5.故该卡片可以按照如图所示放置:图示为n取最大值的时候,n=12.故选D.【点评】本题考查的是已知正方形边长正方形对角线长的计算,旋转正方形卡片并且找到合适的位置使得n为最大值,是解题的关键.三、解答题18.(1)计算:|1﹣|+()﹣1﹣2cos30°.(2)化简:﹣.【考点】实数的运算;分式的加减法;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.【解答】解:(1)|1﹣|+()﹣1﹣2cos30°=﹣1+2﹣2×=﹣1+2﹣=1;(2)﹣=﹣==.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握绝对值、负整数指数幂、特殊角的三角函数值、二次根式等考点的运算.同时考查了分式的加减法,注意:①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.19.解下列方程:(1)=;(2)2x=3﹣x2.【考点】解一元二次方程-因式分解法;解分式方程.【分析】(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验,可得方程的解;(2)根据因式分解法解一元二次方程步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,可得答案.【解答】解:(1)去分母,得:2(x﹣2)=3(x+2),去括号,得:2x﹣4=3x+6,移项、合并,得:﹣x=10,系数化为1,得:x=﹣10,经检验:x=﹣10是原分式方程的解,故该分式方程的解为x=﹣10;(2)原方程可化为:x2+2x﹣3=0,左边因式分解,得:(x﹣1)(x+3)=0,∴x﹣1=0或x+3=0,解得:x=1或x=﹣3.【点评】本题主要考查解分式方程和一元二次方程的技能,熟练掌握其基本步骤是解题的关键.20.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.21.国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了200天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据4级的天数是24天,所占的百分比是48%,据此求得调查的总天数;(2)利用总天数减去其它组的天数即可求得5级的天数,从而补全直方图;(3)用360°乘以对应的百分比即可求得对应的圆心角的度数;(4)利用365乘以对应的比例即可求得.【解答】解:(1)抽查的总天数是24÷48%=50(天),故答案是:50;(2)是5级的天数是50﹣3﹣7﹣10﹣24=6(天),;(3)扇形统计图中3级空气质量所对应的圆心角为×360=72°,故答案是:72;(4)估计该年该城市适宜户外活动的天数是×365=146(天).答:估计该年该城市适宜户外活动的天数是146天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.为强化安全意识,某校拟在周一至周五的五天中随机选择2天进行紧急疏散演练,请完成下列问题:(1)周三没有被选择的概率;(2)选择2天恰好为连续两天的概率.【考点】列表法与树状图法.【分析】(1)画树状图展示所有20种等可能的结果数,再找出周三没有被选择的结果数,然后根据概率公式求解;(2)找出选择2天恰好为连续两天的结果数,然后利用概率公式求解.【解答】解:(1)画树状图为:共有20种等可能的结果数,周三没有被选择的结果数12,所以周三没有被选择的概率==;(2)选择2天恰好为连续两天的结果数为8,所以选择2天恰好为连续两天的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,已知一次函数y=ax﹣2的图象与反比例函数y=的图象交于A(k,a),B两点.(1)求a,k的值;(2)求B点的坐标;(3)不等式ax<﹣2的解集是x<﹣1或0<x<3(直接写出答案)【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入两个函数解析式求解即可;(2)将两个函数解析式联立组成方程组进行求解,即可求得交点B的坐标;(3)将不等式ax<﹣2变成ax+2<,再结合函数图象进行判断即可.【解答】解:(1)由题意知,点A在双曲线上,即a==1又∵点A在直线上,∴a=ka﹣2∴1=k﹣2,即k=3∴a=1,k=3(2)由(1)可得:解得:或∵点B在第三象限∴B的坐标为(﹣1,﹣3)(3)根据图象可得,不等式ax<﹣2的解集是:x<﹣1或0<x<3.【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是把两个函数关系式联立成方程组求解.解题时注意:若方程组有解,则两者有交点;若方程组无解,则两者无交点.24.在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心,OB长为半径的圆交BC于D,DE⊥AC交AC于E.(1)求证:DE是⊙O的切线;(2)若⊙O与AC相切于F,AB=AC=8cm,sinA=,求⊙O的半径的长.【考点】切线的判定与性质;等腰三角形的性质.【分析】(1)根据切线的判定定理,只需连接OD,证明OD⊥DE.已知DE⊥AC,故利用同位角相等,两条直线平行就可证明;(2)根据切线的性质定理,连接过切点的半径,运用锐角三角函数的定义,用半径表示OA的长,再根据AB的长列方程求解.【解答】(1)证明:如图1,连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC.又DE⊥AC,∴DE⊥OD.∴DE是⊙O的切线.(2)解:⊙O与AC相切于F点,如图2,连接OF,则:OF⊥AC.在Rt△OAF中,sinA=,∴OA=OF,又AB=OA+OB=8,∴OF+OF=8,∴OF=3cm.【点评】此题综合运用了切线的判定和性质,熟练运用锐角三角函数的定义表示出两条边之间的关系是解题的关键.25.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【分析】(1)直接根据题意列出关于a、b、c的方程组,解方程组即可解决问题.(2)运用分类讨论的数学思想,根据等腰三角形的定义,分类讨论,数形结合,即可解决问题.【解答】解:(1)由题意得:,解该方程组得:a=﹣1,b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.(2)由题意得:OA=3,OB=3;由勾股定理得:AB2=32+32,∴AB=3.当△ABM为等腰三角形时,①若AB为底,∵OA=OB,∴此时点O即为所求的点M,故点M的坐标为M(0,0);②若AB为腰,以点B为圆心,以长为半径画弧,交y轴于两点,此时两点坐标为M(0,3﹣3)或M(0,3+3),以点A为圆心,以长为半径画弧,交y轴于点(0,﹣3);综上所述,当△ABM为等腰三角形时,点M的坐标分别为(0,0)、(0,3﹣3)、(0,3+3)、(0,﹣3).【点评】该题主要考查了抛物线与x轴的交点、待定系数法求二次函数的解析式等知识点及其应用问题;解题的关键是灵活运用、大胆猜测、科学解答.26.如图,在△ABC中,∠ACB=90°,AC=BC,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.(1)求证:△ACE∽△BFC;(2)试探究AF、BE、EF之间有何数量关系?说明理由.【考点】相似形综合题.【分析】(1)由已知得出∠A=∠B=45°,再证得∠CFB=∠ACE,即可得出△ACE∽△BFC;(2)将△ACF顺时针旋转90°至△BCD,由旋转的性质得出CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF,证得∠DCE=∠2,由SAS可证△ECF≌△ECD,得出EF=DE,证得∠EBD=90°,由勾股定理即可得出结论.【解答】(1)证明:∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵∠CFB=∠ACF+∠A=∠ACF+45°,∠ACE=∠ACF+∠ECF=∠ACF+45°,∴∠CFB=∠ACE,∴△ACE∽△BFC;(2)解:EF2=AF2+BE2,理由如下:∵AC=BC,∠ACB=90°,∴∠A=∠ABC=45°,将△ACF顺时针旋转90°至△BCD,如图所示:则CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF,∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2,在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE,∵∠5=45°,∴∠EBD=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2.【点评】本题是相似形综合题,考查了等腰直角三角形的判定和性质、全等三角形的判定和性质、勾股定理、相似三角形的判定、旋转的性质等知识;综合性较强,有一定的难度.27.(10分)(2016o镇江二模)如图,为了保护运河入江口的古桥OA,规划建一座新桥BC,已知,古桥OA与河岸OC垂足,新桥BC与河岸AB垂直,且BC=AB,OC=210m,tan∠BCO=.(1)分别求古桥OA与新桥BC的长;(2)根据规划,建新桥的同时,将对古桥设立一个保护区,要求:保护区的边界为与BC相切的圆,且圆心M在线段OA上;古桥两端O和A到该圆上任意一点的距离不少于140m,设圆形保护区半径为R.OM=xm.①试求半径R与x的关系式;②试探究:当x多长时,圆形保护区的面积最大?并求出最大面积时R的值.【考点】圆的综合题.【分析】(1)利用正切的比设出BH=4x,CH=3x,则BC=5x,作辅助线构建直角三角形证△ABG≌△BCH,利用等量关系列方程求出x的值,从而求出古桥OA与新桥BC的长;(2)过M作MN⊥BC,构建直角△BNP,证明Rt△BHC∽Rt△BNP,得比例式表示出PN和半径R的长,根据已知古桥两端O和A到该圆上任意一点的距离不少于140m和三角形的三边关系得出不等式组,求出x的取值,最后得出结论.【解答】解:(1)如图1,过B作BH⊥OC,垂足为H,由tan∠BCO=,设BH=4x,则CH=3x,BC=5x,又∵AB⊥BC知,即∠ABH+∠CBH=90°,又∠BCH+∠CBH=90°,∴∠ABH=∠BCH,再过A作AG⊥BH,垂足为G,则∠AGB=∠BHC=90°,∵AB=BC,∴△ABG≌△BCH(AAS),∴BG=CH=3x,AG=BH=4x,则OH=4x,OA=HG=x,又OC=210m,即7x=210,x=30,5x=150,故古桥OA的长为30m,新桥BC的长的长为150m;(2)如图2所示,因为OM=xm,故AM=(30﹣x)m,过M作MN⊥BC,分别交BC、BH于N、P,则MN即为保护区半径R,且MP=AB=150,BP=MA=30﹣xRt△BHC∽Rt△BNP,,则,PN=18﹣x①半径R=MN=MP+PN=150+18﹣x=168﹣x即R=160﹣x(0≤x≤30)②由题意得:R﹣OM≥140,即(168﹣x)﹣x≥140,解得x≤又R﹣AM≥140,即(168﹣x)﹣(30﹣x)≥140,解得x≥5故有:5≤x≤因为,要使圆面积最大,其半径R最大,而R最大也就是x要取最小值,故当x=5时,圆面积最大,此时半径为R的值为165m.【点评】此题属于圆的综合题,涉及了全等三角形和相似三角形的判定与性质、三角函数值的知识、不等式组的应用及最大值的求法,综合性较强;有几点技巧需同学们掌握:①利用条件中的三角函数值能求角的度数或利用比值表示边的长;②求极值时也可以利用三边关系列不等式求解.28.(10分)(2016o镇江二模)如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.(1)求运动时间t的取值范围;(2)整个运动过程中,以点P、O、Q为顶点的三角形与Rt△AOB有几次相似?请直接写出相应的t值.(3)t为何值时,△POQ的面积最大?最大值是多少?【考点】相似形综合题.【分析】(1)根据题意求出OB的长,得到运动时间t的取值范围;(2)分Rt△POQ∽Rt△AOB和Rt△POQ∽Rt△BOA两种情况,根据相似三角形的性质列出比例式,计算即可;(3)用t表示出△POQ的面积,根据二次函数的性质解答即可.【解答】解:(1)∵点B的坐标为(8,0),∴OB=8,∵点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动,∴t≤4,则运动时间t的取值范围为:0≤t≤4;(2)由题意得,AP=t,OP=6﹣t,OQ=2t,①当Rt△POQ∽Rt△AOB时,=,即=,解得,t=,②当Rt△POQ∽Rt△BOA时,=,即=,解得,t=,则当t=或时,以点P、O、Q为顶点的三角形与Rt△AOB相似,即相似两次;=﹣(t﹣3)2+9,
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。