资源资源简介:
免费人教版中考数学复习课件第一部分第七章图形的变化中考数学试题试卷网(2016?北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是(D)(导学号02052543)2.(2016?东营)从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是(B)(导学号02052544)3.(2015?济南)如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为(D)A.(4,3)B.(2,4)C.(3,1)D.(2,5)(导学号02052545)第3题图第4题图4.(2016?无锡)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是(A)A.7B.22C.3D.23(导学号02052546)解析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°-∠ABC=60°,AB=4,BC=23,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=23,BA1=2,∠A1BB1=90°,∴BD=DB1=3,∴A1D=A1B2+BD2=7.故选A5.(2016?宿迁)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为(B)A.2B.3C.2D.1(导学号02052547)第5题图第6题图6.(2016?雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为(D)A.22B.2C.23D.33(导学号02052548)解析:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE?DE,即AE2=3x2,∴AE=3x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(3x)2+(3x)2,解得x=3,∴AE=3,DE=33,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条直线上时,由垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=33,故选D二、填空题7.我国传统木结构房屋,窗户常用各种图案装饰,下图是一种常见的图案,这个图案有__2__条对称轴.(导学号02052549)第7题图第9题图8.(2016?杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为__(-5,-3)__.(导学号02052550)9.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连接AA′,若∠AA′B′=20°,则∠B的度数为__65°__.(导学号02052551)解析:∵将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,∴AC=A′C,∠ACA′=90°,∠B=∠AB′C,∴∠CAA′=45°,∵∠AA′B′=20°,∴∠A′B′C=∠CAA′+∠AA′B′=65°,∴∠B=65°10.《九章算术》是我国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门__315__步而见木.(导学号02052552)解析:由题意得,AB=15里,AC=4.5里,CD=3.5里,△ACB∽△DEC,∴DEAC=DCAB,即DE4.5=3.515,解得,DE=1.05里=315步,∴走出南门315步恰好能望见这棵树第10题图第12题图12.如图,D、E分别是AC和AB上的点,AD=DC=4,DE=3,DE∥BC,∠C=90°,将△ADE沿着AB边向右平移,当点D落在BC上时,平移的距离为__5__.(导学号02052553)13.(2016?临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为__6__.(导学号02052554)解析:∵将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,∴FG是AC的垂直平分线,∴AF=CF,设AF=FC=x,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8-x)2=x2,解得:x=5,即CF=5,BF=8-5=3,∴△ABF的面积为12×3×4=6第13题图第14题图14.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④四边形AOBO′的面积为6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是__①②③⑤__.(导学号02052555)解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,在△BO′A和△BOC中,OB=O′B∠1=∠3AB=BC,∴△BO′A≌△BOC(SAS),又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×4×3+12×23×4=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+12×3×332=6+934,故结论⑤正确.综上所述,正确的结论为:①②③⑤.三、解答题15.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,连接BE.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.(导学号02052556)(1)证明:∵矩形ABCD中,AD∥BC,∴∠B′EF=∠EFB,又∵∠B′FE=∠BFE,∴∠B′FE=∠B′EF,∴B′E=B′F,又∵BF=B′F,∴B′E=BF(2)解:∵Rt△A′B′E中,A′B′=AB=4,∴B′E=(A′B′)2+(A′E)2=32+42=5.∴BF=B′E=516.(2015?安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.(导学号02052557)解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求:17.(2016?陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则ABED=BCDC,ABGF=BFFH,即AB1.5=BC2,AB1.65=BC+182.5,解得:AB=99,答:“望月阁”的高AB的长度为99m18.(2016?山西百校联考三)如图①,在Rt△ABC和Rt△CED中,∠ABC=∠CED=90°,点E在AC上.点D在BC上,点F为AD的中点,连接BF、EF.观察与发现:(1)线段BF和EF的数量关系是__BF=EF__.拓广与探索:(2)如图②,把图①中的△CED绕着点C顺时针旋转,使点E落在边BC的延长线上,点F为AD的中点,则(1)中发现的结论是否成立?若成立.请给予证明;若不成立.请说明理由.(3)如图③,把图①中的△CED绕着点C顺时针旋转,使点D落在边AC上,点F为AD的中点,则(1)中发现的结论是否还成立?若成立.请给予证明;若不成立.请说明理由.(导学号02052559)解:(2)结论BF=EF成立.证明:如图①,过点F作FG⊥BE于点G,∴∠FGB=90°,图①∵∠ABC=90°,∴∠ABC+∠FGB=180°,∴FG∥AB.又∵∠CED=90°,∴∠CED=∠BGF.∴FG∥DE.∴AB∥FG∥DE.∴BGGE=AFFD.∵点F是AD的中点,∴AF=FD.∴BG=BE.又∵FG⊥BE,∴BF=EF;(3)结论BF=EF成立.证明:如图②,过点F作FM⊥BC于点M,过点D作DN⊥BC于点N,连接FN.∴∠FMC=∠DNC=90°.图②∵△CDE绕着点C顺时针旋转,使点D落在边AC上,∴∠DCN=∠DCE.在△CDN和△CDE中,∠DNC=∠DEC=90°∠DCN=∠DCEDC=DC,∴△CDN≌△CDE(AAS).∴CN=CE.在△FNC和△FEC中,CN=CE∠NCF=∠ECFFC=FC,∴△FNC≌△FEC(SAS).∴
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。