资源资源简介:
免费重庆市育才成功学校中考数学一诊试卷含解析中考数学试题试卷网2016年重庆市育才成功学校中考数学一诊试卷一、选择题(本大题12个小题,每小题4分,共48分)1.﹣4的倒数是()A.4 B.﹣4 C. D.2.计算(2x3)2的结果是()A.4x6 B.2x6 C.4x5 D.2x53.下列商标是中心对称图形的是()A. B. C. D.4.在函数中,x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x>﹣15.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46° B.48° C.56° D.72°6.如图,△ABC是⊙O的内接三角形,∠AOB=135°,则∠ACB的度数为()A.35° B.55° C.60° D.67.5°7.关于x的一元二次方程ax2﹣bx+3=0的一个根为x=2,则代数式4b﹣8a+3的值为()A.﹣3 B.3 C.6 D.98.一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数是()A.5,6 B.4,4.5 C.5,5 D.5,4.59.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S△CDE=3cm2,则△BCF的面积为()A.6cm2 B.9cm2 C.18cm2 D.27cm210.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面11.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3)…,则第6个图形的周长是()A.32 B.64 C.128 D.25612.已知二次函数y=ax2+bx+c(a≠0)与x轴一个交点在﹣1,﹣2之间,对称轴为直线x=1,图象如图,给出以下结论:①b2﹣4ac>0;②abc>0;③2a﹣b=0;④8a+c<0;⑤<0.其中结论正确的个数有()A.1 B.2 C.3 D.4二、填空题(本大题6个小题,每小题4分,共24分)13.重庆育才中学现已有一校四区:重庆育才中学,重庆育才成功学校,双福育才中学习水育才中学,总占地440亩,约290000平方米,将290000用科学记数法表示为.14.计算(﹣1)2005﹣|﹣2|+(﹣)﹣1﹣2sin60°的值为.15.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为.16.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.17.从﹣4、﹣1、1、4这四个数中,任选两个不同的数分别作为m、n的值,恰好使得关于x的不等式组有3个整数解,且点(m,n)落在双曲线上的概率为.18.如图,△ABC中,AB=AC=4,∠BAC=120°,以A为一个顶点的等边三角形ADE绕点A在∠BAC内旋转,AD、AE所在的直线与BC边分别交于点F、G.若点B关于直线AD的对称点为B′,当△FGB′是以点G为直角顶点的直角三角形时,BF的长为.三、解答题(本大题2个小题,每小题7分,共14分)19.解方程组:20.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为"都可以"的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?四、解答题(本大题4个小题,每小题l0分,共40分)21.化简:(1)(x+2)2+(x+2)(x﹣2)﹣2(2x+1)(3﹣x)(2).22.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.23.上星期我市某水果价格呈上升趋势,某超市第一次用1000元购进的这种水果很快卖完,第二次又用960元购进该水果,但第二次每千克的进价是第一次进价的1.2倍,购进数量比第一次少了20千克.(1)求第一次购进这种水果每千克的进价是多少元?(2)本星期受天气影响,批发市场这种水果的数量有所减少.该超市所购进的数量比上星期所进购的总量减少了4a%,每千克的进价在上星期第二次进价的基础上上涨5a%,结果本星期进货总额比上星期进货总额少16元,求a的值.24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?五、解答题(本大题2个小题,每小题l2分,共24分)25.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连结BE,点G是BE的中点,连结AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,已知AC=,CD=2,求AG的长度;(2)如图②,当∠BAC=∠DCF=60°时,AG与DG有怎样的位置和数量关系,并证明;(3)当∠BAC=∠DCF=α时,试探究AG与DG的位置和数量关系(数量关系用含α的式子表达).26.如图,在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式,并直接写出D点的坐标.(2)如图1,在直线AC的上方抛物线上有一动点P,过P点作PQ垂直于x轴交AC于点Q,PM∥BD交AC于点M.①求△PQM周长最大值;②当△PQM周长取得最大值时,PQ与x轴交点为H,首位顺次连接P、H、O、D构成四边形,它的周长为L,若线段OH在x轴上移动,求L最小值时OH移动的距离及L的最小值.(3)如图2,连接BD与y轴于点F,将△BOF绕点O逆时针旋转,记旋转后的三角形为△BOF′,B′F′所在直线与直线AC、直线OC分别交于点G、K,当△CGK为直角三角形时,直接写出线段BG的长.2016年重庆市育才成功学校中考数学一诊试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)1.﹣4的倒数是()A.4 B.﹣4 C. D.【考点】倒数.【专题】计算题.【分析】根据倒数的定义:乘积是1的两个数,即可求解.【解答】解:﹣4的倒数是﹣.故选D.【点评】本题主要考查了倒数的定义,正确理解定义是解题关键.2.计算(2x3)2的结果是()A.4x6 B.2x6 C.4x5 D.2x5【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简求出即可.【解答】解:(2x3)2=4x6.故选:A.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.下列商标是中心对称图形的是()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念判断即可.【解答】解:A、不是中心对称图形,故不正确;B、是中心对称图形,故正确;C、不是中心对称图形,故不正确;D、不是中心对称图形,故不正确;故选:B.【点评】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.在函数中,x的取值范围是()A.x≥﹣1 B.x≤﹣1 C.x≠﹣1 D.x>﹣1【考点】函数自变量的取值范围.【分析】根据分母不能为零,被开方数是非负数,可得答案.【解答】解:由中,得x+1>0,解得x>﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.5.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46° B.48° C.56° D.72°【考点】平行线的性质.【分析】求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:如图:∵∠1=42°,∴∠3=90°﹣42°=48°,∵a∥b,∴∠2=∠3,∴∠2=48°,故选B.【点评】本题考查了平行线的性质的应用,能求出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.6.如图,△ABC是⊙O的内接三角形,∠AOB=135°,则∠ACB的度数为()A.35° B.55° C.60° D.67.5°【考点】圆周角定理.【分析】直接根据圆周角定理进行解答即可.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=135°,∴∠ACB=∠AOB=67.5°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.关于x的一元二次方程ax2﹣bx+3=0的一个根为x=2,则代数式4b﹣8a+3的值为()A.﹣3 B.3 C.6 D.9【考点】一元二次方程的解.【分析】把x=2代入已知方程得到:4a﹣2b=﹣3,然后将其整体代入所求的代数式进行求值即可.【解答】解:把x=2代入,得4a﹣2b+3=0,所以4a﹣2b=﹣3,所以4b﹣8a+3=﹣2(4a﹣2b)+3=﹣2×(﹣3)+3=9.故选:D.【点评】本题考查一元二次方程的解的意义,即使等号成立的自变量的值.8.一组数据3,x,4,5,8的平均数为5,则这组数据的众数、中位数是()A.5,6 B.4,4.5 C.5,5 D.5,4.5【考点】众数;算术平均数;中位数.【专题】计算题;压轴题.【分析】根据平均数先求出x,再根据众数、中位数的定义求解即可.【解答】解:∵一组数据3,x,4,5,8的平均数为5,∴(3+x+4+5+8)÷5=5,∴x=5,∴这组组数据的众数为5;这组数据按从小到大的顺序排列为:3、4、5、5、8,∴中位数是5,故选C.【点评】本题考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数.一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.另外,还涉及到了平均数的知识.9.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S△CDE=3cm2,则△BCF的面积为()A.6cm2 B.9cm2 C.18cm2 D.27cm2【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得BC=AD,BC∥AD,CD∥AB,∠D=∠B,则BC=3DE,再证明△CDE∽△FBC,然后利用三角形相似的性质可计算出△BCF的面积.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD,BC∥AD,CD∥AB,∠D=∠B,∵AE=2ED,∴BC=3DE,∵CD∥AF,∴∠DCE=∠F,∴△CDE∽△FBC,∴=()2=,∴S△FBC=9×3=27(cm2).故选D.【点评】本题考查了相似三角形的判定与性质:两个三角形相似对应角相等,对应边的比相等;相似三角形面积的比等于相似比的平方.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.10.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面【考点】函数的图象.【专题】压轴题;数形结合.【分析】A、由于线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定小莹的速度是没有变化的,B、小莹比小梅先到,由此可以确定小梅的平均速度比小莹的平均速度是否小;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定小梅是否在小莹的前面.【解答】解:A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.11.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3)…,则第6个图形的周长是()A.32 B.64 C.128 D.256【考点】规律型:图形的变化类.【分析】图1周长为1+=4=22,图2周长为2+3+1+1+1=2(1+)=8=23,图3周长为4+6+2+2+2=2(2+3+1+1+1)=16=24,…,由此得出一般规律.【解答】解:观察图形周长变化规律可知,图1周长为1+=4=22,图2周长为2+3+1+1+1=2(1+)=8=23,图3周长为4+6+2+2+2=2(2+3+1+1+1)=16=24,…,第6个图形的周长是26+1=128,故选C.【点评】考查了规律型:图形的变化,本题是一道找规律的题目,关键是把各周长和的结果写成2的指数次方,得出指数与图形序号的关系.12.已知二次函数y=ax2+bx+c(a≠0)与x轴一个交点在﹣1,﹣2之间,对称轴为直线x=1,图象如图,给出以下结论:①b2﹣4ac>0;②abc>0;③2a﹣b=0;④8a+c<0;⑤<0.其中结论正确的个数有()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断即可.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,①正确;∵抛物线开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,②正确;∵﹣=1,∴2a+b=0,③错误;∵x=﹣2时,y>0,∴4a﹣2b+c>0,即8a+c>0,④错误;根据抛物线的对称性可知,当x=3时,y<0,∴9a+3b+c<0,∴<0,⑤正确.综上所述,正确的结论是:①②⑤.故选:C.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数的关系是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)13.重庆育才中学现已有一校四区:重庆育才中学,重庆育才成功学校,双福育才中学习水育才中学,总占地440亩,约290000平方米,将290000用科学记数法表示为2.9×105.【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将290000平方米用科学记数法表示为:2.9×105.故答案为:2.9×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算(﹣1)2005﹣|﹣2|+(﹣)﹣1﹣2sin60°的值为﹣6.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】分别根据数的开方法则、负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣1﹣(2﹣)﹣3﹣2×=﹣1﹣2+﹣3﹣=﹣6.故答案为:﹣6.【点评】本题考查的是实数的运算,熟知数的开方法则、负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.15.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为12米.【考点】解直角三角形的应用-坡度坡角问题.【分析】在Rt△ABC中,根据坡面AB的坡比以及BC的值,求出AC的值,再通过解直角三角形即可求出斜面AB的长.【解答】解:∵Rt△ABC中,BC=6米,迎水坡AB的坡比为1:,∴BC:AC=1:,∴AC=oBC=6(米),∴AB===12(米)故答案为12米.【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.16.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.【考点】切线的性质;扇形面积的计算.【分析】根据已知条件证得三角形ODC是等腰直角三角形,得到∠DOB=45°,然后根据扇形的面积公式计算即可.【解答】解:∵AB为半圆O的直径,∴AB=2OD,∵AB=2CD=4,∴OD=CD=2,∵CD与半圆O相切于点D,∴∠ODC=90°,∴∠DOB=45°,∴阴影部分的面积==,故答案为:.【点评】本题考查了切线的性质,扇形的面积的求法,等腰直角三角形的性质,证得△ODC是等腰直角三角形是解题的关键.17.从﹣4、﹣1、1、4这四个数中,任选两个不同的数分别作为m、n的值,恰好使得关于x的不等式组有3个整数解,且点(m,n)落在双曲线上的概率为.【考点】列表法与树状图法;一元一次不等式组的整数解;反比例函数图象上点的坐标特征.【分析】首先用列表法或树形图得到所用可能的情况,若使点(m,n)落在双曲线上,则mn=﹣4,由此得到mn的关系式,再根据恰好使得关于x,y的二元一次方程组有3个整数解,即可求出m,n的值,由此可得到点(m,n)落在双曲线上的概率.【解答】解:画树状图得:若使点(m,n)落在双曲线上,则mn=﹣4,∴点(m,n)可以是(1,﹣4)、(﹣4,1),(﹣1,4),(4,﹣1),∵恰好使得关于x,y的二元一次方程组有3个整数解,∴点(m,n)可以是(﹣4,1),(1,﹣4),∴且点(m,n)落在双曲线y=﹣上的概率为==,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比18.如图,△ABC中,AB=AC=4,∠BAC=120°,以A为一个顶点的等边三角形ADE绕点A在∠BAC内旋转,AD、AE所在的直线与BC边分别交于点F、G.若点B关于直线AD的对称点为B′,当△FGB′是以点G为直角顶点的直角三角形时,BF的长为4﹣4.【考点】旋转的性质;轴对称的性质.【专题】计算题.【分析】作AH⊥BC于H,如图1,先根据等腰三角形的性质和含30度的直角三角形三边的关系求出BC=4,再把△ACG绕点A顺时针旋转120°得到△ABG′,连结FG′、AB′,如图,则根据旋转的性质得BG′=CG,AG=AG,∠ABG′=∠C=30°,∠1=∠BAG′,所以∠FBG′=60°,再证明△AFG≌△AFG′得到FG=FG′,接着利用对称性质得FB=FB′,AB=AB′,∠2=∠3,易得∠1=∠4,AC=AB′,则可判断△AB′G与△ACG关于AG对称,得到GB′=GC,则GB′=BG′,然后证明△FB′G≌△FBG′得到∠FGB′=∠BG′F=90°,于是在Rt△BFG′中含30度的直角三角形三边的关系得BG′=BF,FG′=BF,则BF+BF+BF=BC=4,然后解关于BF的方程即可.【解答】解:作AH⊥BC于H,如图1,∵AB=AC=4,∠BAC=120°,∴∠B=30°,BH=CH,在Rt△ABH中,AH=AB=2,BH=AH=2,∴BC=2BH=4,把△ACG绕点A顺时针旋转120°得到△ABG′,连结FG′、AB′,如图,则BG′=CG,AG=AG,∠ABG′=∠C=30°,∠1=∠BAG′,∴∠FBG′=60°,∵∠FAG=60°,∴∠1+∠2=60°,∴∠FAG′=60°,在△AFG和△AFG′中,,∴△AFG≌△AFG′,∴FG=FG′,∵点B关于直线AD的对称点为B′,∴FB=FB′,AB=AB′,∠2=∠3,而∠3+∠4=60°,∠1+∠2=60°,∴∠1=∠4,而AC=AB=AB′,∴△AB′G与△ACG关于AG对称,∴GB′=GC,∴GB′=BG′,在△FB′G和△FBG′中,,∴△FB′G≌△FBG′,∴∠FGB′=∠BG′F=90°,在Rt△BFG′中,∵∠FBG′=60°,∴BG′=BF,FG′=BF,∴CG=BF,FG=BF,∴BF+BF+BF=BC=4,∴BF=4﹣4.故答案为4﹣4.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和对称的性质.三、解答题(本大题2个小题,每小题7分,共14分)19.解方程组:【考点】解二元一次方程组.【专题】计算题.【分析】此题用代入法和加减法均可.【解答】解:由(1)得:y=2x+4.代入(2)得:4x﹣5(2x+4)=﹣23,所以x=.代入(1)得:2×﹣y=﹣4,y=5.故方程组的解为.【点评】这类题目的解题关键是掌握二元一次方程组解法中的加减消元法和代入消元法.20.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为"都可以"的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)观察统计图,利用喜欢C款的人数除以它所占的百分比即可得到调查的总人数,进一步求得喜欢B款的人数和都可以的人数;得到"都可以"的人数,再计算出它所占的百分比,用360°乘以"都可以"的百分比即可求得所占圆心角的度数;然后补全条形统计图;(2)用样本中持"喜欢A款"的百分比乘以600估算喜欢A款的有多少人.【解答】解:(1)12÷20%=60(人)60×15%=9(人)60﹣28﹣12﹣9=11(人)扇形统计图中认为"都可以"的所占圆心角为360×=66度;图如下:(2)600×=280(人)答:估算喜欢A款的有280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和样本估计总体.四、解答题(本大题4个小题,每小题l0分,共40分)21.化简:(1)(x+2)2+(x+2)(x﹣2)﹣2(2x+1)(3﹣x)(2).【考点】分式的混合运算;整式的混合运算.【专题】计算题;分式.【分析】(1)原式利用完全平方公式,平方差公式,以及多项式乘多项式法则计算,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=x2+4x+4+x2﹣4﹣12x+4x2﹣6+2x=6x2﹣6x﹣6;(2)原式=o=o=﹣.【点评】此题考查了分式的混合运算,以及整式的混合运算,熟练掌握运算法则是解本题的关键.22.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数图象上点的坐标特征求出m和n,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A(2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B(﹣3,n),∴n==﹣2,∴点B的坐标(﹣3,﹣2),由题意得,,解得,,∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b>的解集为:﹣3<x<0或x>2;(3)直线y=x+1与x轴的交点C的坐标为(﹣1,0),则OC=1,则S△ABO=S△OBC+S△ACO=×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.23.上星期我市某水果价格呈上升趋势,某超市第一次用1000元购进的这种水果很快卖完,第二次又用960元购进该水果,但第二次每千克的进价是第一次进价的1.2倍,购进数量比第一次少了20千克.(1)求第一次购进这种水果每千克的进价是多少元?(2)本星期受天气影响,批发市场这种水果的数量有所减少.该超市所购进的数量比上星期所进购的总量减少了4a%,每千克的进价在上星期第二次进价的基础上上涨5a%,结果本星期进货总额比上星期进货总额少16元,求a的值.【考点】分式方程的应用.【分析】(1)设第一次购进水果单价x元,则第二次购进水果单价1.2x元,根据第二次比第一次的重量少了20千克,可得出分式方程,解出即可;(2)根据(1)中所求的数据可以求得上周进货量为180千克和进价是12元,则依据"超市所购进的数量比上星期所进购的总量减少了4a%,每千克的进价在上星期第二次进价的基础上上涨5a%,结果本星期进货总额比上星期进货总额少16元"列出关于a方程,通过解方程来求a的值即可.【解答】解:(1)设第一次购进水果单价x元,则第二次购进水果单价1.2x元由题意得﹣=20,解得:x=10,经检验的x=10是原方程的解,答:第一次购进这种水果每千克的进价是10元.(2)上周进货总量:+=180(千克)上周第二次的进价每千克:12元1000+960﹣12(1+5a%)×180(1﹣4a%)=16令a%=t,化简得:200t2﹣10t﹣1=0,解得t1=0.1,t2=﹣0.05(舍去),所以a=10.【点评】本题考查了一元二次方程及分式方程的应用,解答此类题目的关键是仔细审题,找到题目中的等量关系及不等关系,从而利用数学知识解答.24.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn;(2)利用所探索的结论,找一组正整数a、b、m、n填空:4+2=(1+1)2;(3)若a+4=,且a、m、n均为正整数,求a的值?【考点】二次根式的混合运算.【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.五、解答题(本大题2个小题,每小题l2分,共24分)25.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连结BE,点G是BE的中点,连结AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,已知AC=,CD=2,求AG的长度;(2)如图②,当∠BAC=∠DCF=60°时,AG与DG有怎样的位置和数量关系,并证明;(3)当∠BAC=∠DCF=α时,试探究AG与DG的位置和数量关系(数量关系用含α的式子表达).【考点】四边形综合题.【分析】(1)延长DG与BC交于H,先证△BG△≌EGD,得到BH=DC,=ED,HG=DG,得出BH,再证△ABH≌△ACD,得出∠BAH∠=∠CAD,AH=AD,进而求得∠HAD=90°,即可;(2)延长DG与BC交于H,先证△BG△≌EGD,得到BH=DC,=ED,HG=DG,得出BH,再证△ABH≌△ACD,得出∠BAH∠=∠CAD,AH=AD,得到△H△AD为等边三角形,即可;(3)延长DG与BC交于H,先证△BG△≌EGD,得到BH=DC,=ED,HG=DG,得出BH,再证△ABH≌△ACD,得出∠BAH∠=∠CAD,AH=AD,得到△H△AD为等腰三角形,即可.【解答】(1)解:如图1,延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中,∵∠GBH=∠GED,∠GHB=∠GDE,BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DCF=90°,∴∠DCB=90°,∴∠ACD=45°,∴∠ABH=∠ACD=45°,在△ABH和△ACD中,∵AB=AC,∠ABH=∠ACD,BH=CD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∵∠BAH+∠HAC=90°,∴∠CAD+∠HAC=90°,即∠HAD=90°,∴AG⊥GD,AG=GD;在Rt△ABC中,AB=AC=,∴BC=6在Rt△DCH中,DC=2,HC=BC﹣BH=6﹣2=4,∴DH==2,∴GD=DH=,∴AG=GD=.(2)AG⊥GD,AG=DG;证明如下:如图2,延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中,∵∠GBH=∠GED,∠GHB=∠GDE,BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=60,∴∠ABC=60°,∠ACD=60°,∴∠ABC=∠ACD=60°,在△ABH和△ACD中,∵AB=AC,∠ABH=∠ACD,BH=CD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=60°,∴AG⊥HD,∠HAG=∠DAG=30°,∴tan∠DAG=tan30°=,∴AG=DG;(3)如图3,延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DC∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC中点,∴BG=EG,∴△BGH△≌△EGD,∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=DCF=α,∴∠ABC=90°﹣,∠ACD=90°﹣,∴∠ABC=ACD,∵AB=AC,∠ABH=∠ACD,BH=CD,∴△ABH≌△ACD,∴∠BAH=∠CAD,AH=AD,∴∠BAC=HAD=α,∴AG⊥HD,∠HAG=∠DAG=,∴tan∠DAG=tan=,∴DG=AGtan.【点评】此题是四边形的综合题,主要考查三角形的全等,解本题的关键是全等三角形的判定,难点是作出正确的辅助线.26.如图,在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式,并直接写出D点的坐标.(2)如图1,在直线AC的上方抛物线上有一动点P,过P点作PQ垂直于x轴交AC于点Q,PM∥BD交AC于点M.①求△PQM周长最大值;②当△PQM周长取得最大值时,PQ与x轴交点为H,首位顺次连接P、H、O、D构成四边形,它的周长为L,若线段OH在x轴上移动,求L最小值时OH移动的距离及L的最小值.(3)如图2,连接BD与y轴于点F,将△BOF绕点O逆时针旋转,记旋转后的三角形为△BOF′,B′F′所在直线与直线AC、直线OC分别交于点G、K,当△CGK为直角三角形时,直接写出线段BG的长.【考点】二次函数综合题.【分析】(1)首先求出抛物线与坐标轴的交点,利用待定系数法以及配方法即可解决问题.(2))①如图1中,作DN∥y轴J交AC于N,直线BD交AC于K.先求出△DKN的三边,再求出PQ的最大值,利用相似三角形的性质求出PM、MQ即可解决问题.②如图2中,作PE∥x轴交y轴与E,作E关于x轴的对称点K,连接DK与x轴交于点O′,将OH平移到O′H处,此时四边形PHO′D的周长最小.分别求出PD,DK,OO′即可解决问题.(3)分两种情形①如图3中,当∠CGK=90°时,作OE⊥GK于E,想办法求出点G坐标即可.②如图4中,当∠CKG=90°时,求出点G坐标即可解决问题.【解答】解:(1)对于抛物线y=﹣x2﹣2x+3,令x=0得y=3,∴点C(0,3),令y=0得﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),设直线AC的解析式为y=kx+b,把A、C两点坐标代入得到,解得,∴直线AC的解析式为y=x+3.∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D坐标为(﹣1,4).(2)①如图1中,作DN∥y轴J交AC于N,直线BD交AC于K.∵直线AC的解析式为y=x+3,直线BD的解析式为y=y=﹣2x+2,由解得,∴点K坐标(﹣,),N(﹣1,2),∴DN=2,DK==,KN==,在△PMQ中,∵∠PMQ=∠DKN=定值,∴当△PMQ周长的最大值时,PQ定值最大,设P(m,﹣m2﹣2m+3)则Q(m,m+3),∴PQ=﹣m2﹣2m+3﹣m﹣3=﹣m2﹣3m=﹣(m+)2+.∵a=﹣1<0,∴m=﹣时,PQ的最大值为,由△PMQ∽△DKN,得==,∴==,∴PM=,MQ=,∴△PMQ的周长最大值为++.②如图2中,作PE∥x轴交y轴与E,作E关于x轴的对称点K,连接DK与x轴交于点O′,将OH平移到O′H处,此时四边形PHO′D的周长最小.∵P(﹣,),D(﹣1,4),K(0,﹣),∴O′坐标为(﹣,0),PD==,DK==,O′H=,∴OH向左平移个单位,L的最小值=PD+DK+O′H=++.(3)①如图3中,当∠CGK=90°时,作OE⊥GK于E,∵OA=OC,∠AOC=90°,∴∠GCK=∠GKC=∠OKE=∠KOE=45°,∵OE===,∴OK=,KC=3﹣,∴G(﹣,+),∴GB==.②如图4中,当∠CKG=90°时,点G(﹣3,),∴BG==4.【点评】本题考查二次函数综合题、待定系数法、一次函数、最小值问题、旋转变换、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决最值问题,学会用分类讨论的思想思考问题,学会构建二次函数确定最值问题,属于中考压轴题.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。