资源资源简介:
免费天津市南开区2018届中考《圆证明题》专项复习试卷含真题分类汇编解析2018年九年级数学中考复习圆证明题专项复习卷1、如图,点A,B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.求证:AC=CD.2、如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.3、如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.4、已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线.(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半径.5、如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN⊥AC于点N.求证:MN是⊙O的切线.6、如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求⊙O的直径.7、已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD(2)求证:DE为⊙O的切线.8、如图,AB是⊙O的直径,C为⊙O上一点,经过点C的直线与AB的延长线交于点D,连接AC,BC,∠BCD=∠CAB.E是⊙O上一点,弧CB=弧CE,连接AE并延长与DC的延长线交于点F.(1)求证:DC是⊙O的切线;(2)若⊙O的半径为3,sinD=,求线段AF的长.9、如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=,求NQ的长.10、已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC;连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD(2)求证:DE为⊙O的切线11、如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.12、如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.⑴求证:BC是⊙O的切线;⑵已知AD=3,CD=2,求BC的长.13、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.14、已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.15、如图,以△ABC的边AB上一点O为圆心的圆经过B、C两点,且与边AB相交于点E,D是弧BE的中点,CD交AB于F,AC=AF.(1)求证:AC是⊙O的切线;(2)若EF=5,DF=,求⊙O的半径.参考答案1、∵直线AC与⊙O相切,∴OA⊥AC,∴∠OAC=90°,即∠OAB+∠CAB=90°,∵OC⊥OB,∴∠BOC=90°,∴∠B+∠ODB=90°,而∠ODB=∠ADC,∴∠ADC+∠B=90°,∴OA=OB,∴∠OAB=∠B,∴∠ADC=∠CAB,∴AC=CD.2、(1)解:PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)解:∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=3,∴AC=AB=9,在Rt△AMC中,AM==6,设⊙O的半径为r,则OC=r,OM=AM﹣r=6﹣r,在Rt△OCM中,OM2+CM2=OC2,即32+(6﹣r)2=r2,解得r=,∴CE=2r=,OM=6﹣=,∴BE=2OM=,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=,∴PC=3、(1)证明:连接OP,∵AC是⊙O的切线,∴OP⊥AC,BC⊥AC,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC(2)作PH⊥AB于H.∵PB平分∠ABC,PC⊥BC,PH⊥AB,∴PC=PH=1,在Rt△APH中,AH==2,∵∠A=∠A,∠AHP=∠C=90°,∴△APH∽△ABC,∴=,∴=,∴AB=3,∴BH=AB﹣AH=,在Rt△PBC和Rt△PBH中,,∴Rt△PBC≌Rt△PBH,∴BC=BH=.4、(1)证明:连接OB,∵AC是⊙O直径,∴∠ABC=90°,∵OC=OB,∴∠OBC=∠C,∵∠PBA=∠C,∴∠PBA=∠OBC,即∠PBA+∠OBA=∠OBC+∠ABO=∠ABC=90°,∴OB⊥PB,∵OB为半径,∴PB是⊙O的切线;(2)解:∵OC=OB,∠C=60°,∴△OBC为等边三角形,∴BC=OB,∵OP∥BC,∴∠CBO=∠POB,∴∠C=∠POB,在△ABC和△PBO中∵,∴△ABC≌△PBO(ASA),∴AC=OP=8,即⊙O的半径为4.5、证明:连接OM,∵AB=AC,∴∠B=∠C,∵OB=OM,∴∠B=∠OMB,∴∠OMB=∠C,∴OM∥AC,∵MN⊥AC,∴OM⊥MN.∵点M在⊙O上,∴MN是⊙O的切线.6、(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∴∠DCE=∠A,∵CE=4,DE=2∴在Rt△ACE中,可得AE=8∴AD=6在在Rt△ADB中可得BD=3∴根据勾股定理可得7、证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.8、(1)证明:连接OC,BC,∵AB是⊙O的直径,∴∠ACB=90°,即∠1+∠3=90°.∵OA=OC,∴∠1=∠2.∵∠DCB=∠BAC=∠1.∴∠DCB+∠3=90°.∴OC⊥DF.∴DF是⊙O的切线;(2)解:在Rt△OCD中,OC=3,sinD=.∴OD=5,AD=8.∵=,∴∠2=∠4.∴∠1=∠4.∴OC∥AF.∴△DOC∽△DAF.∴.∴AF=.9、(1)证明:连结OP,如图,∴直线PQ与⊙O相切,∴OP⊥PQ,∵OP=ON,∴∠ONP=∠OPN,∵NP平分∠MNQ,∴∠ONP=∠QNP,∴∠OPN=∠QNP,∴OP∥NQ,∴NQ⊥PQ;(2)解:连结PM,如图,∵MN是⊙O的直径,∴∠MPN=90°,∵NQ⊥PQ,∴∠PQN=90°,而∠MNP=∠QNP,∴Rt△NMP∽Rt△NPQ,∴=,即=,∴NQ=3.10、(1)证明:(1)连接AD;∵AB是⊙O的直径,∴∠ADB=90°.又∵AB=AC∴DC=BD(2)连接半径OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠0DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.11、(1)证明:连接CE,如图所示:∵AC为⊙O的直径,∴∠AEC=90°.∴∠BEC=90°.∵点F为BC的中点,∴EF=BF=CF.∴∠FEC=∠FCE.∵OE=OC,∴∠OEC=∠OCE.∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°.∴EF是⊙O的切线.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等边三角形.∴∠AOE=60°.∴∠COD=∠AOE=60°.∵⊙O的半径为2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°.∴OD=2OC=4,∴CD=.在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.12、1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;(2)可证明△ABC∽△BDC,则=,即可得出BC=;13、解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∴劣弧AC的长为.14、(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CEoCB=CDoCA,AC=AB=4,∴o2=4CD,∴CD=.15、(1)证明:连结OD、OC,如图,∵D是弧BE的中点,∴OD⊥BE,∴∠D+∠3=90°,∵∠3=∠2,∴∠D+∠2=90°,∵AF=AC,OD=OC,∴∠1=∠2,∠D=∠4,∴∠1+∠4=90°,∴OC⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=OE﹣EF=r﹣5,在Rt△ODF中,∵OD2+OF2=DF2,∴r2+(r﹣5)2=()2,整理得r2﹣5r﹣6=0,解得r1=6,r2=﹣1,∴,⊙O的半径为6.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。