资源资源简介:
免费天津市中考一轮《轴对称与等腰三角形》复习试卷中考数学试题试卷网2017年中考数学一轮复习专题轴对称与等腰三角形综合复习一选择题:1.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.2.以下图形中对称轴的数量小于3的是()A.B.C.D.3.下列图形中轴对称图形的个数是()A.1个B.2个C.3个D.4个4.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥5.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋6.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有()A.1个B.2个C.3个D.4个7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()8.如图是轴对称图形,它的对称轴有()A.2条B.3条C.4条D.5条9.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()A.2B.2C.4D.410.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角11.如图,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD折过来,点C落在C′位置,当BC=4时,BC′的长()A.等于2B.大于2C.小于2D.大于2且小于412.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.513.如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=,则AC=()A.1B.2C.3D.414.如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,C′D交AB于E,若∠BDC′=22.5°,则在不添加任何辅助线的情况下,图中45°的角(图中虚线也可视为角的边)有()A.7个B.6个C.5个D.4个15.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.16.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个17.如图,在△ABC中,AB=BC,∠ACB=90°,点D,E在AB上,将△ACD,△BCE分别沿CD,CE翻折,点A,B分别落在点A′,B′的位置,再将△A′CD,△B′CE分别沿A′C,B′C翻折,点D与点E恰好重合于点O,则∠A′CB′的度数是()A.60°B.45°C.30°D.15°18.如图,D是等边△ABC边AB上的一点,且AD:BD=1:2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,则CE:CF=()A.B.C.D.19.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°20.如图,△ABC中,AC=3,BC=4,AB=5,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是()A.2.4B.3C.4D.4.8二填空题:21.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB为.22.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10cm,则BC的长为cm.(2)若∠EAF=100°,则∠BAC.23.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.24.如图,将矩形纸片的两个直角分别沿、翻折,点恰好落在边上的点处,点恰好落在边上.若=3,=5,则=.25.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是______.26.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.27.如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是______.28.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为______.29.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.30.如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是.三简答题:31.如图,在△ABC中,AB=AC,D为BC为上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.32.如图在△ABC中,BC=10,∠BAC=110°,MN,PQ分别垂直平分AB,AC.求∠MAP的度数和△AMP的周长.33.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.34.如图1,在四边形ABCD中,DC‖AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;(2)如图2,在上述条件下,若∠A=∠ABC=60O,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.35.已知a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.36.某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长分别为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边长的直角三角形.请你设计出所有合适的方案,画出草图,并求出扩建后的等腰三角形花圃的面积.37.如图,在△ABC中,∠B=∠C,AB=10cm,BC=8cm,D为AB的中点,点P在线段上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上以相同速度由点C向点A运动,一个点到达终点后另一个点也停止运动.当△BPD与△CQP全等时,求点P运动的时间.38.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明.39.小学我们就学过,四个内角都是直角的四边形叫做长方形,长方形的对边相等且平行。如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A-B-C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上运动,t=_______s时,△APE的面积为长方形面积的.(2)在整个运动过程中,t为何值时,△APE为直角三角形?(3)在整个运动过程中,t为何值时,△APE为等腰三角形?40.如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动,且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.参考答案1.C2.D.3、D4、A5、B6、C7、D8、C9、A10、D11、A12、C13、B14、C15、B16、B17、C18、B19、D【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.20、A【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵AC=3,BC=4,AB=5,∴AC2+BC2=AB2,∴∠ACB=90°,∴ABoCE=BCoAC,即5CE=3×4∴CE=.即CM+MN的最小值为.故选A.21、10°22、10cm.1400.23、40°.24、425、(﹣1,0).26、.27、5.28、6.29、4.30、2≤x≤6.【解答】解:如图:①当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=10;在Rt△PFC中,PF=10,FC=6,则PC=8;∴BP=xmin=10﹣8=2;②当E、B重合时,BP的值最大;根据折叠的性质即可得到AB=BP=6,即BP的最大值为6.故答案为:2≤x≤6.31、解:(1)∠DAC=120°-45°=75°(2)∵∠ADC=180°-75°-30°=75°,∴∠DAC=∠ADC,∴DC=AC,又AB=AC,∴DC=AB32、∠MAP=40°,△AMP的周长为10.33、【解答】证明:(1)∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴DM=BM;(2)由(1)可知DM=BM,∵N是BD的中点,∴MN⊥BD.34、(1)略(2)等边三角形.35、解:△ABC是等边三角形.证明如下:因为2a2+2b2+2c2=2ab+2ac+2bc,所以2a2+2b2+2c2-2ab-2ac-2bc=0,a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,(a-b)2+(a-c)2+(b-c)2=0,所以(a-b)2=0,(a-c)2=0,(b-c)2=0,得a=b且a=c且b=c,即a=b=c,所以△ABC是等边三角形.36、三种情况:48m2,40m2,m237、解:∵D为AB的中点,AB=10cm,∴BD=AD=5cm.设点P运动的时间是xs,若BD与CQ是对应边,则BD=CQ,∴5=3x,解得x=,此时BP=3×=5(cm),CP=8-5=3(cm),BP≠CP,故舍去;若BD与CP是对应边,则BD=CP,∴5=8-3x,解得x=1,符合题意.综上,点P运动的时间是1s38、(1)证明:∵AC=BC∴∠CBA=∠CAB又∵∠ACB=90°∴∠CBA=∠CAB=45°又∵∠CAD=∠CBD=15°∴∠DBA=∠DAB=30°∴∠BDE=30°+30°=60°又易证得△ADC≌△BDC得∠ACD=∠BCD=45°由外角得∠CDE=60°得∠CDE=∠BDE=60°所以DE平分∠BDC(2)答:ME=BD证明:连结MC证得△MCD为等边三角形证得△BDC≌△EMC得ME=BD39、(3)若AE=EP,此时P在B点处,即t=6…若AP=AE,此时P在AB上且AP=5,即t=5…若AP=PE,此时P为AE的垂直平分线与AB的交点,如图,过P作PH⊥CD于H,得PH=BC=4.设AP=x,则PE=x,CH=PB=6-x,∴EH=x-3.在Rt△PHE中,由勾股定理,得∴t=综上,当t=5或6或时,△APE为等腰三角形.40、BE=0;BE=2-;BE=1;综上所述,当BE=0或2-或1时,△AEM能构成等腰三角形;
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。