资源资源简介:
免费天津市2017年中考一轮《解直角三角形》复习试卷中考模拟数学试题试卷网2017年中考数学一轮复习专题解直角三角形综合复习一选择题:1.在△ABC中,若+(1-tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°2.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°3.若规定sin(α﹣β)=sinαcosβ﹣cosαsinβ,则sin15°=()A.B.C.D.4.下列各式中正确的是()A.sin300+cos600=1B.sinA==300C.cos600=cos(2×300)=2cos300D.tan600+cot450=25.在锐角△ABC中,|sinA﹣|+(cosB﹣)2=0,则∠C的度数是()A.30°B.45°C.60°D.75°6.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式是()A.c=B.c=C.c=D.c=7.若0°<α<90°,则下列说法不正确的是()A.sinα随α的增大而增大;B.cosα随α的增大而减小;C.tanα随α的增大而增大;D.sinα、cosα、tanα的值都随α的增大而增大。8.如图所示,正六边形ABCDEF内接于圆O,则cos∠ADB的值为()9.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=,AB的垂直平分线ED交BC的延长线于D点,垂足为E,则sin∠CAD=()10.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7m,则树高BC为(用含α的代数式表示)()A.7sinαB.7cosαC.7tanαD.11.△ABC在网格中的位置如图,则cosB的值为()A.B.C.D.212.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC值为()A.1B.C.D.13.在Rt△ABC中,∠C=90°,BC=1,那么AB的长为()A.sinAB.cosAC.D.14.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.15.如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间距离是()A.10海里B.(10-10)海里C.10海里D.(10-10)海里16.如图所示,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度约为(结果精确到0.1m,≈1.73)()A.3.5mB.3.6mC.4.3mD.5.1m17.如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A.B.12C.14D.2118.如图,在高度是90米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD是()(结果可以保留根号)A.30(3+)米B.45(2+)米C.30(1+3)米D.45(1+)米19.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A.B.C.D.20.如图,两条宽度都是1的纸条交叉叠在一起,且它们的夹角为,则它们重叠部分(图中阴影部分)的面积是()A.B.C.D.1二填空题:21.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)22.如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)23.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB长是4米.那么新传送带AC长是米.24.如图,正方形ABCD边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=.25.如图,某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=海里.26.如图,为测量某塔AB的高度,在离塔底部10米处目测其塔顶A,仰角为60°,目高1.5米,则求该塔的高度为米.(参考数据:≈1.41,≈1.73)27.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)28.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)29.如图,在矩形ABCD中,AE⊥BD,垂足为E,BE与ED的长度之比为1:3,则tan∠ADB=.30.如图所示的半圆中,是直径,且,,则的值是.三简答题:31.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).32.为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查.如图,一测量船在A岛测得B岛在北偏西30°方向,C岛在北偏东15°方向,航行100海里到达B岛,在B岛测得C岛在北偏东45°,求B,C两岛及A,C两岛的距离.(结果保留到整数,≈1.41,≈2.45)33.如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据≈1.4,≈1.7)34.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角函数值表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)35.我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为,背水坡坡角,新坝体的高为,背水坡坡角。求工程完工后背水坡底端水平方向增加的宽度.(结果精确到0.1米,参考数据,,)36.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为多少?37.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)38.某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)39.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米).40.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截.红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方.求红蓝双方最初相距多远(结果不取近似值).参考答案1、D。2、B.3、D.4、A.5、D.6、A.7、D.8、C.9、A.10、C.11、A.12、D.13、D.14、D.15、D.16、D.17、A.18、A.19、B.20、A.21、(5+5)22、1023、824、略.25、7.26、18.8米.27、2.728、137.29、;30、.31、【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AHotan∠CAH,∴CH=AHotan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长为(4+)米.32.解:由题意知∠BAC=45°,∠FBA=30°,∠EBC=45°,AB=100海里,过B点作BD⊥AC于点D,∵∠BAC=45°,∴△BAD为等腰直角三角形,∴BD=AD=50,∠ABD=45°,∴∠CBD=180°-30°-45°-45°=60°,∴∠C=30°,∴在Rt△BCD中,BC=100≈141(海里),CD=50,∴AC=AD+CD=50+50≈193(海里)33.解:在直角△ABD中,BD===41(米),则DF=BD-OE=41-10(米),CF=DF+CD=41-10+40=41+30(米),则在直角△CEF中,EF=CF·tanα=41+30≈41×1.7+30=99.7≈100(米),则点E离地面的高度EF是100米34.解:(1)设CG=xm,由图可知:EF=(x+20)otanα,FG=xotanβ则(x+20)tanα+33=xtanβ,解得x=;(2)x===55,则FG=xotanβ=55×2.1=115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.35、解:在Rt△BAE中,,BE=162米∴在Rt△DEC中,,DE=176.6米∴∴(米)即工程完工后背水坡底端水平方向增加的宽度约为37.3米36.GE//AB//CD,BC=2GC,GE=15米,AB=2GE=30米,AF=BC=ABocot∠ACB=30×cot60?=10米,DF=AFotan30?=10×=10米,CD=AB-DF=30-10=20米。答:略37、【解答】解:∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE﹣EF=x﹣2,∴AF===(x﹣2),∵AF=BE=BC+CE.∴(x﹣2)=2+x,解得x=6.答:树DE的高度为6米.38.【解答】解:(1)∵DC⊥CE,∴∠BCD=90°.又∵∠DBC=10°,∴∠BDC=80°.∵∠ADF=85°,∴∠ADB=360°﹣80°﹣90°﹣85°=105°.(2)过点D作DG⊥AB于点G.在Rt△GDB中,∠GBD=40°﹣10°=30°,∴∠BDG=90°﹣30°=60°.又∵BD=100米,∴GD=BD=100×=50米.∴GB=BD×cos30°=100×=50米.在Rt△ADG中,∠ADG=105°﹣60°=45°,∴GD=GA=50米.∴AB=AG+GB=(50+50)米.答:索道长(50+50)米.39、【解答】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=1.2米,∴AC=AB﹣BC=6.8米,∵∠DCA=90°﹣∠A=30°,∴CD=AC×cos∠DCA=6.8×≈5.9米.答:该校地下停车场的高度AC为6.8米,限高CD约为5.9米.40.解:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,红蓝双方最初相距.在Rt△BCE中∵∠E=90°,∠CBE=60°,又∴米;在Rt△CDF中∵∠F=90°,∠DCF=45°,CD=AB=1000米,∴米,∴)米,故红蓝双方最初相距)米.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。