资源资源简介:
免费天津市2017年中考一轮《正方形》复习试卷中考数学模拟试题网2017年中考数学一轮复习专题正方形综合复习一选择题:1.如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°2.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1B.2C.3D.33.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A.B.2C.2D.14.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3C.D.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3C.D.1+6.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=,且∠ECF=45°,则CF的长为()A.B.C.D.7.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.8.如图,正方形的边长为4,动点在正方形的边上沿运动,运动到点停止,设,的面积,则关于的函数图象大致为9.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.1911.如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),,过点A作AE∥BP,交BQ于点E,则下列结论正确的是()A.B.C.D.12.如图,正方形ABCD和CEFG的边长分别为m、n,那么△AEG的面积的值()A.与m、n的大小都有关B.与m、n的大小都无关C.只与m的大小有D.只与n的大小有关13.如图,在正方形ABCD中,AB=4,P是线段AD上动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF值为()A.B.4C.D.214.如图,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论:(1)∠E=22.50.(2)∠AFC=112.50.(3)∠ACE=1350.(4)AC=CE.(5)AD∶CE=1∶.其中正确的有()A.5个B.4个C.3个D.2个15.如图,E为正方形ABCD的边BC上一动点,以AE为一边作正方形AEFD,对角线AF交边CD于H,连EH.①BE+DH=EH;②EF平分∠HEC;③若E为BC的中点,则H为CD的中点;④.其中正确的是()A.①②④B.①③④C.①②③D.①②③④16.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N从A点出发沿折线AD→DC→CB以每秒3cm的速度运动,到达B时运动同时停止,设△AMN的面积为y(cm),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()17.将正方形ABCD绕点A按逆时针方向旋转,得正方形,交CD于点E,AB=,则四边形的内切圆半径为()A.B.C.D.18.如图所示,正方形顶点,,顶点位于第一象限,直线将正方形分成两部分,记位于直线左侧阴影部分的面积为S,则S关于t函数图象大致是()19.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF中点,那么CH长是()A.2.5B.C.D.220.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④.其中正确结论的序号是()A.①②③B.①②④C.①③④D.②③④二填空题:21.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.22.如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=.23.如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE=.24.在平面直角坐标系中,正方形ABCD如图摆放,点A的坐标为(﹣1,0),点B的坐标为(0,2),点D在反比例函数y=(k<0)图象上,将正方形沿x轴正方向平移m个单位长度后,点C恰好落在该函数图象上,则m的值是.25.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.26.如图,正方形ABCD中,点E、F分别是BC、CD边上的点,且∠EAF=45°,对角线BD交AE于点M,交AF于点N.若AB=4,BM=2,则MN的长为.27.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N=(用含有n的式子表示).28.如图,已知正方形ABCD的顶点A、B在⊙O上,顶点C、D在⊙O内,将正方形ABCD绕点逆时针旋转,使点D落在⊙O上.若正方形ABCD的边长和⊙O的半径均为6cm,则点D运动的路径长为cm.29.如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是.(写出所有正确结论的序号)30.如图,四边形是正方形,是等边三角形,EC=,则正方形ABCD的面积为.三简答题:31.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.32.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.33.如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.(1)求证:点O在∠BAC的平分线上;(2)若AC=5,BC=12,求OE的长.34.正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE=EN,连接CN、CE.(1)求证:AE=CE.(2)求证:△CAN为直角三角形.(3)若AN=4,正方形的边长为6,求BE的长.35.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明;若不是,则说明理由;(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?36.如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF(2)连接AC交EF于点D,延长OC至点M,使OM=OA,连结EM、FM,试证明四边形AEMF是菱形.37.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.38.感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.39.如图所示,四边形ADEF为正方形,△ABC为等腰直角三角形,D在BC边上,连接CF.(1)求证:BC⊥CF;(2)若△ABC的面积为16,BD:DC=1:3,求正方形ADEF的面积;(3)当(2)的条件下,连接AE交DC于G,求的值.40.问题情境:如图将边长为8cm的正方形纸片ABCD折叠,使点B恰好落在AD边的中点F处,折痕EG分别交AB、CD于点E、G,FN与DC交于点M,连接BF交EG于点P.独立思考:(1)AE=_______cm,△FDM的周长为_____cm;(2)猜想EG与BF之间的位置关系与数量关系,并证明你的结论.拓展延伸:如图2,若点F不是AD的中点,且不与点A、D重合:①△FDM的周长是否发生变化,并证明你的结论.②判断(2)中的结论是否仍然成立,若不成立请直接写出新的结论(不需证明).参考答案1、C2、C3、B4、A5、A6、A.7、B8、A9、A10、B11、B12、D13、A;14、A.15、A16、B17、B18、C19、B20、A21、522、23、8.24、125、7.26、27、28、π29、①②③30、831、(1)略;(2)AE⊥CG;32、【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.33、【解答】(1)证明:过点O作OM⊥AB,∵BD是∠ABC的一条角平分线,∴OE=OM,∵四边形OECF是正方形,∴OE=OF,∴OF=OM,∴AO是∠BAC的角平分线,即点O在∠BAC的平分线上;(2)解:∵在Rt△ABC中,AC=5,BC=12,∴AB===13,设CE=CF=x,BE=BM=y,AM=AF=z,∴,解得:,∴CE=2,∴OE=2.34、【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,AB=CB,在△ABE和∠CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;(2)证明:∵AE=CE,AE=EN,∴∠EAC=∠ECA,CE=EN,∴∠ECN=∠N,∵∠EAC+∠ECA+∠ECN+∠N=180°,∴∠ACE+∠ECN=90°,即∠ACN=90°,∴△CAN为直角三角形;(3)解:∵正方形的边长为6,∴AC=BD=6,∵∠ACN=90°,AN=4,∴CN==2,∵OA=OC,AE=EN,∴OE=CN=,∵OB=BD=3,∴BE=OB+OE=4.35、【解答】解:(1)OE=OF.证明如下:∵CE是∠ACB的平分线,∴∠1=∠2.∵MN∥BC,∴∠1=∠3.∴∠2=∠3.∴OE=OC.同理可证OC=OF.∴OE=OF.四边形BCFE不可能是菱形,若四边形BCFE为菱形,则BF⊥EC,而由(1)可知FC⊥EC,在平面内过同一点F不可能有两条直线同垂直于一条直线.当点O运动到AC中点时,且△ABC是直角三角形(∠ACB=90°)时,四边形AECF是正方形.理由如下:∵O为AC中点,∴OA=OC,∵由(1)知OE=OF,∴四边形AECF为平行四边形;∵∠1=∠2,∠4=∠5,∠1+∠2+∠4+∠5=180°,∴∠2+∠5=90°,即∠ECF=90°,∴?AECF为矩形,又∵AC⊥EF.∴?AECF是正方形.∴当点O为AC中点且△ABC是以∠ACB为直角三角形时,四边形AECF是正方形.36、略;37、【解答】解:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=(∠AOC﹣∠MON)=(90°﹣45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.38、【解答】拓展:证明:∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE,∴,∴△ABE≌△CAF(AAS).应用:解:∵在等腰三角形ABC中,AB=AC,CD=2BD,∴△ABD与△ADC等高,底边比值为:1:2,∴△ABD与△ADC面积比为:1:2,∵△ABC的面积为9,∴△ABD与△ADC面积分别为:3,6;∵∠1=∠2,∴∠BEA=∠AFC,∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE,∴,∴△ABE≌△CAF(AAS),∴△ABE与△CAF面积相等,∴△ABE与△CDF的面积之和为△ADC的面积,∴△ABE与△CDF的面积之和为6,故答案为:6.39、【解答】解:(1)∵四边形ADEF为正方形,△ABC为等腰直角三角形,∴AD=AF=EF=DE,AB=AC,∠DAF=∠BAC=∠DEF=∠ADE=90°,∠B=∠ACB=45°,AD∥EF.∴∠DAF﹣∠DAC=∠BAC﹣∠DAC,∴∠DAB=∠FAC.在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠B=∠ACF,BD=CF,∴∠ACF=45°,∴∠ACF+∠ACB=90°,即∠BCF=90°.∴BC⊥CF;(2)设AB=BC=x,由题意,得=16,∴x=4.∴BC=8.∵BD:DC=1:3,∴BD=8×=2,CD=8﹣2=6.作DH⊥AB于点H,∴∠DHB=∠DHA=90°,∴∠BDH=45°,∴∠B=∠BDH,∴BH=DH.设BH=DH=a,由勾股定理,得a=,∴AH=4﹣=3.在Rt△ADH中,由勾股定理,得AD2=20.∴AD=2.∵S正方形ADEF=AD2,∴正方形ADEF的面积为20;(3)设EF交BC于点M,设CM=x,则DM=6﹣x.∵BD=CF,∴CF=2.在Rt△CMF中,由勾股定理,得FM=.∵∠DEF=∠FCM=90°,∠DME=∠FMC,∴△FCM∽△DEF,∴,∴,∴,解得:x1=1,x2=﹣4(舍去)∴CM=1,FM=,∴ME=.DM=5∵AD∥EF.∴△AGD∽△EGM,∴,∴=2,∴DG=2GM,设GM=b,DG=2b,∴b+2b=5,∴b=,∴GC=,∴DG=6﹣=.∴=.答:的值为.40、(1)3,16(2)EG⊥BF,EG=BF则∠EGH+∠GEB=90°由折叠知,点B、F关于直线GE所在直线对称∴∠FBE=∠EGH∵ABCD是正方形∴AB=BC∠C=∠ABC=90°四边形GHBC是矩形,∴GH=BC=AB∴△AFB全等△HEG∴BF=EG(3)①△FDM的周长不发生变化由折叠知∠EFM=∠ABC=90°∴∠DFM+∠AFE=90°∵四边形ABCD为正方形,∠A=∠D=90°∴∠DFM+∠DMF=90°∴∠AFE=∠DMF∴△AEF∽△DFM∴设AF为x,FD=8-x∴∴FMD的周长=∴△FMD的周长不变②(2)中结论成立
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。