资源资源简介:
免费天津市河西区2018届中考《三角形》专项强化练习含真题分类汇编解析2018年九年级数学中考复习三角形解答题强化练习1.如图,AB=DC,AC=DB,求证:AB∥CD.2.已知点A(2m+n,2),B(1,n﹣m),当m、n分别为何值时,(1)A.B关于x轴对称;(2)A.B关于y轴对称.3.如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.4.已知:如图,AB∥CD,AD∥BC,求证:AB=CD,AD=BC.5.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.6.如图,已知△ABC,AB=AC,AD是△ABC角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,O,F.若∠CAD=20°,求∠OCD的度数.7.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.求证:(1)AD=AG;(2)AD与AG的位置关系如何?并证明你的结论.8.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.9.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.10.如图:AD是△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD。求证:BE⊥AC。11.如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.12.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B13.如图,在等边三角形ABC中,点M是BC边上的任意一点(不与端点重合),连接AM,以AM为边作等边三角形AMN,连接CN.(1)求∠ACN的度数.(2)若点M在△ABC的边BC的延长线上,其他条件不变,则∠ACN的度数是否发生变化?(直接写出结论即可)14.如图,∠BAD=∠CAE=90o,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)若AC=10,求四边形ABCD的面积;(2)求证:AC平分∠ECF;(3)求证:CE=2AF.15.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,求∠BCE的度数;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.参考答案1.证明:∵在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).∴∠ABC=∠DCB(全等三角形的对应角相等).∴AB∥CD(内错角相等,两直线平行).2.解:(1)∵点A(2m+n,2),B(1,n﹣m),A.B关于x轴对称,∴,解得;(2)∵点A(2m+n,2),B(1,n﹣m),A.B关于y轴对称,∴,解得:.3.证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC.即:∠BAC=∠DAE.在△ABC与又△ADE中,,∴△ABC≌△ADE.∴BC=DE.4.解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC.5.证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.6.50°7.(1)证明:∵BE⊥AC∴∠AEB=90∴∠ABE+∠BAC=90∵CF⊥AB∴∠AFC=∠AFG=90∴∠ACF+∠BAC=90,∠G+∠BAG=90∴∠ABE=∠ACF∵BD=AC,CG=AB∴△ABD≌△GCA(SAS)∴AG=AD2、AG⊥AD证明:∵△ABD≌△GCA∴∠BAD=∠G∴∠GAD=∠BAD+∠BAG=∠G+∠BAG=90∴AG⊥AD8.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.9.证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.10.证明:(1)AD为△ABC上的高,∴BDA=ADC=90.∵BF=AC,FD=CD.∴Rt△BDF≌Rt△ADC.(2)由①知∠C=∠BFD,∠CAD=∠DBF.∠BFD=∠AFE,又∠CBE=∠CAD,∴∠AEF=∠BDF.∠BDF=90,∴BE⊥AC.11.解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.12.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB∠EAD=∠BADAD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B13.14.(1)解:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD∴∠BAC=∠EAD,在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∵S四边形ABCD=S△ABC+S△ACD,(2)证明:∵△ACE是等腰直角三角形,∴∠ACE=∠AEC=45°,由△ABC≌△ADE得:∠ACB=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF;(3)证明:过点A作AG⊥CG,垂足为点G,∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF.15.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。