资源资源简介:
免费浙江省2018年中考数学《图形的变化》总复习阶段检测试卷含真题分类汇编解析阶段检测8图形的变化一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.下列图案属于轴对称图形的是()2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()第2题图第3题图第5题图3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连结AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD4.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形B.正方形C.正六边形D.正十边形5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcmB.2πcmC.3πcmD.5πcm第6题图第7题图7.如图,直线m∥n,圆心在直线n上的⊙A是由⊙B平移得到的,则图中两个阴影三角形的面积大小关系是()A.S1<S2B.S1=S2C.S1>S2D.不能确定8.如图,已知∠AOB=30°,以O为圆心、a为半径画弧交OA、OB于A1、B1,再分别以A1、B1为圆心、a为半径画弧交于点C1,以上称为一次操作.再以C1为圆心,a为半径重新操作,得到C2.重复以上步骤操作,记最后一个两弧的交点(离点O最远)为CK,则点CK到射线OB的距离为()第8题图A.a2B.32aC.aD.3a9.如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+42,其中正确的结论个数为()第9题图A.2B.3C.4D.510.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连结B1B,取BB1的中点D,连结A1D,则A1D的长度是()第10题图A.7B.22C.3D.23二、填空题(本大题有6小题,每小题5分,共30分)11.夏季荷花盛开,为了便于游客领略"人从桥上过,如在河中行"的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.第11题图第12题图第13题图第14题图12.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是.13.如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虚线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.15.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连结BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.第15题图第16题图16.如图,两块完全相同的含30°角的直角三角板ABC和A′B′C′重合在一起,将三角板A′B′C′绕其直角顶点C′按逆时针方向旋转角α(0°<α≤90°),有以下四个结论:①当α=30°时,A′C与AB的交点恰好为AB中点;②当α=60°时,A′B′恰好经过B;③在旋转过程中,存在某一时刻,使得AA′=BB′;④在旋转过程中,始终存在AA′⊥BB′,其中结论正确的序号是.(多填或填错得0分,少填酌情给分)三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.如图,△ABC是等腰三角形,AB=BC,点D为BC的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B作AC的平行线BP;②过点D作BP的垂线,分别交AC,BP,BQ于点E,F,G;(2)在(1)所作的图中,连结BE,CF.求证:四边形BFCE是平行四边形.第17题图18.如图,在平面直角坐标系中,直线AB与x,y轴分别交于A,B两点,OB=8,OA=6,M是OB上一点,将△ABM沿AM折叠,点B恰好落在x轴上的点C.(1)求点C的坐标;(2)求△OMC的面积.第18题图19.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连结CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连结EF.第19题图(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.第20题图21.如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C′.第21题图(1)若点C′刚好落在对角线BD上时,BC′=;(2)若点C′刚好落在线段AB的垂直平分线上时,求CE的长;(3)若点C′刚好落在线段AD的垂直平分线上时,求CE的长.22.(1)如图1,纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为.第22题图A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形,②求四边形AFF′D的两条对角线的长.23.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=2,点D是边AC的中点,点E是斜边AB上的动点,将△ADE沿DE所在的直线折叠得到△A1DE.(1)当点A1落在边BC(含边BC的端点)上时,折痕DE的长是多少?(可在备用图上作图)(2)连结A1B,当点E在边AB上移动时,求A1B长的最小值.第23题图24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.第24题图(1)如图1,若α=90°,求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标.(直接写出结果即可)参考答案阶段检测8图形的变化一、1-5.ABACA6-10.CBCBA二、11.14012.(5,4)13.72414.14415.24+9316.①②④三、17.(1)如图1:(2)证明:如图2:∵BP∥AC,∴∠ACB=∠PBC,在△ECD和△FBD中,∠ACB=∠PBC,CD=BD,∠CDE=∠BDF,∴△ECD≌△FBD,∴CE=BF,∴四边形ECFB是平行四边形.图1图2第17题图18.(1)在Rt△AOB中,AB=AO2+BO2=62+82=10,由折叠的性质可知:BA=AC=10,CO=AC-OA=10-6=4.∴点C的坐标为(-4,0);(2)设OM=x,则CM=8-x.在Rt△COM中,CM2=OC2+OM2,即(8-x)2=42+x2.解得:x=3.S△COM=12OC·OM=12×4×3=6.19.(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,DC=FC,∠BCD=∠ECF,BC=EC,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.第19题图20.(1)如图1所示;(2)如图2所示;(3)找出A的对称点A′(1,-1),连结BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).图1图2图3第20题图21.(1)如图1,∵点B,C′,D在同一直线上,∴BC′=BD-DC′=BD-DC=10-6=4;故答案为:4;(2)如图2,连结CC′,∵点C′在AB的垂直平分线上,∴点C′在DC的垂直平分线上,∴CC′=DC′=DC,则△DC′C是等边三角形,设CE=x,易得DE=2x,由勾股定理得:(2x)2-x2=62,解得:x=23,即CE的长为23;(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:①当点C′在矩形内部时,如图3,∵点C′在AD的垂直平分线上,∴DM=4,∵DC′=6,由勾股定理得:MC′=25,∴NC′=6-25,设EC=y,则C′E=y,NE=4-y,故NC′2+NE2=C′E2,即(6-25)2+(4-y)2=y2,解得:y=9-35,即CE=9-35;②当点C′在矩形外部时,如图4,∵点C′在AD的垂直平分线上,∴DM=4,∵DC′=6,由勾股定理得:MC′=25,∴NC′=6+25,设EC=z,则C′E=z,NE=z-4,故NC′2+NE2=C′E2,即(6+25)2+(z-4)2=z2,解得:z=9+35,即CE=9+35,综上所述:CE的长为9±35.第21题图22.(1)C(2)①证明:∵纸片?ABCD中,AD=5,S?ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:将△AEF平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF=AE2+EF2=32+42=5,∴AF=AD=5,∴四边形AFF′D是菱形;②连结AF′,DF,如图3:在Rt△DE′F中E′F=FF′-E′F′=5-4=1,DE′=3,∴DF=E′D2+E′F2=12+32=10,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′=AE2+F′E2=32+92=310.第22题图23.(1)∵点D是边AC的中点,∴DC=DA=1,∴点A1落在边BC上时,点A1与点C重合,如图1所示.此时,DE为AC的垂直平分线,即DE为△ABC的中位线,∴DE=12BC=1;(2)连结BD,DE,在Rt△BCD中,BD=BC2+CD2=5,由折叠知△A1DE≌△ADE,∴A1D=AD=1,由A1B+A1D≥BD,得:A1B≥BD-A1D=5-1,∴A1B长的最小值是5-1.第23题图24.(1)如图1,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB=32+42=5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=2BA=52;(2)作O′H⊥y轴于H,如图2,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°-∠HBO′=30°,∴BH=12BO′=32,O′H=3BH=332,∴OH=OB+BH=3+32=92,∴O′点的坐标为332,92;(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图2,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,-3),设直线O′C的解析式为y=kx+b,把O′332,92,C(0,-3)代入得332k+b=92b=-3,,解得k=533,b=-3,∴直线O′C的解析式为y=533x-3,当y=0时,533x-3=0,解得x=335,则P335,0,∴OP=335,∴O′P′=OP=335,作P′D⊥O′H于D,∵∠BO′A′=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=12O′P′=3310,P′D=3O′D=910,∴DH=O′H-O′D=332-3310=635,P′纵坐标为OH+P′D=92+910=275,∴P′点的坐标为635,275.第24题图
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。