资源资源简介:
免费浙江省2018年中考数学《二次函数》总复习阶段检测试卷含真题分类汇编解析阶段检测4二次函数一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()2.对于二次函数y=-14x2+x-4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值-3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点3.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y24.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A.y=x2-1B.y=x2+6x+5C.y=x2+4x+4D.y=x2+8x+175.如图是二次函数y=ax2+bx+c的图象,下列结论:第5题图①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为-1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个6.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x … -5 -4 -3 -2 -1 0 …y … 4 0 -2 -2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-527.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()第7题图A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是8.(2017·宜宾)如图,抛物线y1=12(x+1)2+1与y2=a(x-4)2-3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论第8题图①a=23;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2,其中正确结论的个数是()A.1个B.2个C.3个D.4个9.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实数)在-1<x<4的范围内有解,则t的取值范围是()A.t≥-1B.-1≤t<3C.-1≤t<8D.3<t<8第9题图第10题图10.如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y=225x2B.y=425x2C.y=25x2D.y=45x2二、填空题(本大题有6小题,每小题5分,共30分)11.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长量l/mm与温度t/℃之间是二次函数关系:l=-t2-2t+49.由此可以推测最适合这种植物生长的温度为℃.第11题图12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b,其中正确结论的序号有.第12题图第13题图第14题图第15题图13.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为"果圆".已知点A、B、C、D分别是"果圆"与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个"果圆"被y轴截得的弦CD的长为.14.如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=-x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为.15.如图,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O顺时针旋转75°,使点B落在抛物线y=ax2(a<0)的图象上,则该抛物线的解析式为.16.已知:抛物线y=a(x-2)2+b(ab<0)的顶点为A,与x轴的交点为B、C.(1)抛物线对称轴方程为;(2)若D点为抛物线对称轴上一点,若以A,B,C,D为顶点的四边形是正方形,则a,b满足的关系式是.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.已知抛物线y=x2-2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.第18题图18.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为34m,到墙边的距离分别为12m,32m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?第19题图19.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.20.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.21.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件)甲 6 a 20 200乙 20 10 40+0.05x2 80其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.22.A、B两个水管同时开始向一个空容器内注水.如图是A、B两个水管各自注水量y(m3)与注水时间x(h)之间的函数图象,已知B水管的注水速度是1m3/h,1小时后,A水管的注水量随时间的变化是一段抛物线,其顶点是(1,2),且注水9小时,容器刚好注满.请根据图象所提供的信息解答下列问题:(1)直接写出A、B注水量y(m3)与注水时间x(h)之间的函数解析式,并注明自变量的取值范围:第22题图yA=2x(0≤x≤1)()yB=________()(2)求容器的容量;(3)根据图象,通过计算回答,当yA>yB时,直接写出x的取值范围.23.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=-124时,①求h的值;②通过计算判断此球能否过网;(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为125m的Q处时,乙扣球成功,求a的值.第23题图24.如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,-4).第24题图(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第一象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式;(3)当(2)中的平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形.阶段检测4二次函数一、1-5.CBABB6-10.DABCC二、11.-112.①③④13.3+314.l=-2m2+8m+1215.y=-23x216.(1)x=2(2)ab=-1三、17.(1)y=x2-2x+1=(x-1)2,对称轴为直线x=1,顶点坐标为(1,0);(2)抛物线图象如图所示:当x=2时,y=1.由图象可知当x>2时,y的取值范围是y>1.第17题图18.(1)根据题意得:B12,34,C32,34,把B,C代入y=ax2+bx得34=14a+12b,34=94a+32b,解得:a=-1,b=2,∴拋物线的函数关系式为y=-x2+2x;∴图案最高点到地面的距离=-224×(-1)=1;(2)令y=0,即-x2+2x=0,∴x1=0,x2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.19.(1)将A(2,4)与B(6,0)代入y=ax2+bx,得4a+2b=4,36a+6b=0,解得:a=-12,b=3,(2)如图,过A作x轴的垂线,垂足为D(2,0),连结CD,BC,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=12OD·AD=12×2×4=4;S△ACD=12AD·CE=12×4×(x-2)=2x-4;S△BCD=12BD·CF=12×4×-12x2+3x=-x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x-4-x2+6x=-x2+8x,∴S关于x的函数表达式为S=-x2+8x(2<x<6),∵S=-x2+8x=-(x-4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.第19题图20.(1)y=120x,(0<x≤30)[120-(x-30)]x,(30<x≤m)[120-(m-30)]x,(x>m).(2)由(1)可知当0<x≤30或x>m,函数值y都是随着x的增加而增加,当30<x≤m时,y=-x2+150x=-(x-75)2+5625,∵a=-1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75.21.(1)y1=(6-a)x-20,(0<x≤200),y2=10x-40-0.05x2=-0.05x2+10x-40.(0<x≤80).(2)对于y1=(6-a)x-20,∵6-a>0,∴x=200时,y1的值最大=(1180-200a)万元.对于y2=-0.05(x-100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①(1180-200a)=440,解得a=3.7,②(1180-200a)>440,解得a<3.7,③(1180-200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.22.(1)yA=2x(0≤x≤1)18(x-1)2+2(1<x≤9);yB=x(0≤x≤9),(2)容器的总容量是:x=9时,V总容量=x+18(x-1)2+2=9+10=19(m3),(3)当x=18(x-1)2+2时,解得:x1=5-22,x2=5+22,利用图象可得出:当yA>yB时,x的取值范围是:0<x<5-22或5+22<x≤9.23.(1)①当a=-124时,y=-124(x-4)2+h,将点P(0,1)代入,得:-124×16+h=1,解得:h=53;②把x=5代入y=-124(x-4)2+53,得:y=-124×(5-4)2+53=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、7,125代入y=a(x-4)2+h,得:16a+h=1,9a+h=125,解得:a=-15,h=215,∴a=-15.24.(1)设抛物线的解析式为y=ax2+bx+c,将A、B点的坐标代入函数解析式,得-b2a=72,36a+6b+c=0,c=-4,解得a=-23,b=143,c=-4,抛物线的解析式为y=-23x2+143x-4,配方,得y=-23x-722+256,顶点坐标为72,256;(2)E点坐标为x,-23x2+143x-4,S=2×12OA·yE=6-23x2+143x-4,即S=-4x2+28x-24;(3)平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形,理由如下:当平行四边形OEAF的面积为24时,即-4x2+28x-24=24,化简,得x2-7x+12=0,解得x=3或4,当x=3时,EO=EA,平行四边形OEAF为菱形.当x=4时,EO≠EA,平行四边形OEAF不为菱形.∴平行四边形OEAF的面积为24时,平行四边形OEAF可能为菱形.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。