资源资源简介:
免费北京市各区2018届中考一模数学试卷精选汇编:解四边形含真题分类汇编解析解四边形专题东城区21.如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC.(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O.若AC=AB=3,,求线段CE的长.21.(1)证明:∵平行四边形ABCD,∴,.∵AB=AE,∴,.∴四边形ACDE为平行四边形.-------------------2分(2)∵,∴.∴平行四边形ACDE为菱形.∴AD⊥CE.∵,∴BC⊥CE.在Rt△EBC中,BE=6,,∴.根据勾股定理,求得.----------------------5分西城区21.如图,在中,,分别以点,为圆心,长为半径在的右侧作弧,两弧交于点,分别连接,,,记与的交点为.(1)补全图形,求的度数并说明理由;(2)若,,求的长.【解析】(1)补全的图形如图所示..证明:由题意可知,,∵在中,,∴,∴,∴四边形为菱形,∴,∴.(2)∵四边形为菱形,∴.在中,,,,∴,∴.海淀区21.如图,□的对角线相交于点,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD是菱形;(2)若AD=2,则当四边形ABCD的形状是__________时,四边形的面积取得最大值是_______.21.(1)证明:∵,,∴四边形是平行四边形.………………1分∵四边形是平行四边形,∴.∵,∴.∴平行四边形是矩形.………………2分∴.∴.∴平行四边形是菱形.………………3分(2)正方形;………………4分2.………………5分丰台区21.已知:如图,菱形ABCD,分别延长AB,CB到点F,E,使得BF=BA,BE=BC,连接AE,EF,FC,CA.(1)求证:四边形AEFC为矩形;(2)连接DE交AB于点O,如果DE⊥AB,AB=4,求DE的长.21.(1)证明:∵BF=BA,BE=BC,∴四边形AEFC为平行四边形.………………………1分∵四边形ABCD为菱形,∴BA=BC.∴BE=BF.∴BA+BF=BC+BE,即AF=EC.∴四边形AEFC为矩形.………………………2分(2)解:连接DB.由(1)知,AD∥EB,且AD=EB.∴四边形AEBD为平行四边形∵DE⊥AB,∴四边形AEBD为菱形.∴AEEB,AB2AG,ED2EG.………………………4分∵矩形ABCD中,EBAB,AB=4,∴AG2,AE4.∴Rt△AEG中,EG=2.∴ED=4.………………………5分(其他证法相应给分)石景山区21.如图,在四边形中,,,于点.(1)求证:;(2)若,求的长.21.(1)证明:(法一)过点B作BH⊥CE于H,如图1.∵CE⊥AD,∴∠BHC=∠CED=90°,.∵∠BCD=90°,∴,∴.又BC=CD∴≌.∴.∵BH⊥CE,CE⊥AD,∠A=90°,∴四边形是矩形,∴.∴.………………3分(法二)过点C作CH⊥AB交AB的延长线于H.图略,证明略.(2)解:∵四边形是矩形,∴.∵在Rt中,,设,∴.∴.∴,.………………4分∵.∴.………………5分朝阳区21.如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=,求DF的长.21.(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.………………………2分(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=,∴,.在Rt△EMB中,.……………………3分在Rt△EMD中,.…………………4分∴DF=8.………………………………………………………5分燕山区23.如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若∠BCF=120°,CE=4,求菱形BCFE的面积.23.(1)证明:∵点D,E,是AB,AC中点∴DE∥BC,DE=BC……………………….1′又BE=2DE,即DE=BE∴BC=BE又EF=BE∴EF∥BC,EF=BC∴四边形BCFE是平行四边形……………………….2′又EF=BE∴四边形BCFE是菱形……………………….3′(2)∵四边形BCFE是菱形∴BC=BE又∠BCF=120°∴∠BCE=60°∴△BCE是等边三角形∴连结BF交EC于点O.∴BF⊥EC在Rt△BOC中,BO=……………………….4′∴∴……………………….5′门头沟区21.在矩形ABCD中,连接AC,AC的垂直平分线交AC于点O,分别交AD、BC于点E、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.21.(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,……………………1分∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,∵∠EAO=∠FCO,AO=CO,∠AOE=∠COF,∴△AEO≌△CFO(ASA),∴OE=OF.……………2分又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC,∴平行四边形AECF是菱形;……………3分(2)设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x,………………………………………4分在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得x=5,∴AF=5,∴菱形AECF的周长为20.…………………5分大兴区21.如图,矩形ABCD的对角线AC、BD交于点O,且DE=OC,CE=OD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.21.(1)证明:∵DE=OC,CE=OD,∴四边形OCED是平行四边形………………………………1分∵矩形ABCD,∴AC=BD,OC=AC,OD=BD.∴OC=OD.∴平行四边形OCED是菱形………………………………2分(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2.∴AB=DC=.…………………………………………………3分连接OE,交CD于点F.∵四边形OCED为菱形,∴F为CD中点.∵O为BD中点,∴OF=BC=1.∴OE=2OF=2…………………………………………………4分∴S菱形OCED=OE·CD=×2×=…………………………………………………5分平谷区21.如图,在平面直角坐标系xOy中,函数的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数上一点,且满足OP=OA,直接写出点P的坐标(点A除外).21.解:(1)∵直线y=x+1经过点A(1,a),∴a=2. 1∴A(1,2).∵函数的图象经过点A(1,2),∴k=2. 2(2)点P的坐标(2,1),(-1,-2),(-2,-1). 5怀柔区21.直角三角形ABC中,∠BAC=90°,D是斜边BC上一点,且AB=AD,过点C作CE⊥AD,交AD的延长线于点E,交AB延长线于点F.(1)求证:∠ACB=∠DCE;(2)若∠BAD=45°,,过点B作BG⊥FC于点G,连接DG.依题意补全图形,并求四边形ABGD的面积.21.(1)∵AB=AD,∴∠ABD=∠ADB,………………………………1分∵∠ADB=∠CDE,∴∠ABD=∠CDE.∵∠BAC=90°,∴∠ABD+∠ACB=90°.∵CE⊥AE,∴∠DCE+∠CDE=90°.∴∠ACB=∠DCE.…………………………………2分(2)补全图形,如图所示:…………………………3分∵∠BAD=45°,∠BAC=90°,∴∠BAE=∠CAE=45°,∠F=∠ACF=45°,∵AE⊥CF,BG⊥CF,∴AD∥BG.∵BG⊥CF,∠BAC=90°,且∠ACB=∠DCE,∴AB=BG.∵AB=AD,∴BG=AD.∴四边形ABGD是平行四边形.∵AB=AD∴平行四边形ABGD是菱形.………………4分设AB=BG=GD=AD=x,∴BF=BG=x.∴AB+BF=x+x=2+.∴x=,过点B作BH⊥AD于H.∴BH=AB=1.∴S四边形ABDG=AD×BH=.……………………………………………………………………5分延庆区21.如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(1)在Rt△ABC中,∵CE//DC,BE//DC∴四边形DBEC是平行四边形∵D是AC的中点,∠ABC=90°∴BD=DC……1分∴四边形DBEC是菱形……2分(2)∵F是AB的中点∴BC=2DF=2,∠AFD=∠ABC=90°在Rt△AFD中,……3分∴……4分……5分顺义区21.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.21.(1)证明:∵BD=BC,点E是CD的中点,∴∠1=∠2.……………………………………………………1分∵AD∥BC,∴∠2=∠3.∴∠1=∠3.……………………………2分∴BD=DF.∵BD=BC,∴DF=BC.又∵DF∥BC,∴四边形BCFD是平行四边形.∵BD=BC,∴□BCFD是菱形.……………………………………………………3分(2)解:∵∠A=,AD=1,BD=BC=2,∴.∵四边形BCFD是菱形,∴DF=BC=2.…………………………………………………………4分∴AF=AD+DF=3.∴.………………………………5分
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。