资源资源简介:
免费北京市西城区2018年中考数学复习第二周练习试卷含答案试卷分析详解初三下数学周二测试三答案 20180320初三 班 学号 姓名 成绩 一、选择题(每题3分,共24分)下面各题均有四个选项,其中只有一.个.是符合题意的.1.中共中央、国务院近日印发的《国家创新驱动发展战略纲要》强调,要增强企业创新能力,发展壮大创新型企业家群体,推动创新创业,激发全社会创造活力.据悉,2015年全社会研发资金达14000多亿元.将14000用科学计数法表示应为A.0.14×105 B.1.4×104 C.1.4×105 D.0.14×1062.有理数a,b,c在数轴上的位置如图所示,下面结论正确的是c a bA.c>a B.1>0cC.a<bD.ac<03.在下列运算中,正确的是A.a2a3a5B.a23a5C.a6a2a3D.a5a52a104.如图,是一个几何体的三视图,则该几何体的展开图为主视 左视 俯视A. B. C. D.5.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是A.两点确定一条直线 B AB.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直6.已知,关于x的一元二次方程m2x22x10有实数根,则m的取值范围是 A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠27.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.6环,方差分别是S2=0.96,S2=1.12,S2=0.56,S2=1.58.在本次射击测试中,成绩最稳定的是甲 乙 丙 丁A.甲 B.乙 C.丙 D.丁8.一个观察员要到如图1所示的A,B,C,D四个观测点进行观测,行进路线由在同一平面上的AB,BC,CD,DA,AC,BD组成.为记录观察员的行进路线,在AB的中点M处放置了一台定位仪器,设观察员行进的路程为x,观察员与定位仪器之间的距离为y,若观察员匀速行进,且表示y与x的函数关系的图象大致如图2所示,则观察员的行进路线可能为图1 图2A.A→D→C→B B.A→B→C→D C.A→C→B→D D.A→C→D→B二、填空题(本题共24分,每小题3分)9.分解因式:2x34x22x .610.已知点A(2,y1)、B(m,y2)是反比例函数y 的图象上的两点,且xy1y2,写出满足条件的m的一个值,m可以是 .11.已知正六边形ABCDEF的边心距为 3cm,那么正六边形的半径为 cm.12.如图是根据某班50名同学一周的体育锻练情况绘制的条形统计图,那么这个班50名同学一周参加体育锻炼时间的众数是 (小时),中位数是 (小时).学生人数/人25 19 1720 95157 8 9 10锻炼时间/小时13.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为 .14.如图,在 ABCD中,∠1=∠2,∠3=∠4,EF//AD,请直接写出与AE相等的线段 (两条即可),写出满足勾股定理的等D F C2 3式 (一组即可) 1 4G H15.在数学课上,老师提出如下问题:已知:如图,线段AB,BC,求作:平行四边形ABCDAA E BB C小明的作法如下:如图:(1)以点C为圆心,AB长为半径孤弧;A D(2)以点A为圆心,BC长为半径面弧;(3)两弧在BC上方交于点D,连接AD,CD,B C四边形ABCD为所求作平行四边形老师说:"小明的作法正确。"请回答:小明的作图依据是 。16.小明同学在做作业时,遇到这样一道几何题:如图,△DEB和△ABC都是等边三角形,连接DC和AE,求证:AE=DC.AD21 3E B C小明冥思苦想许久不得解,只好去问老师,老师给了他如下提示:欲证AE=DC只需证△ABE≌△CBDBE=BD∠EBA=∠DBC ②等边△DBE ①等边△ABC ∠1=∠3 ∠2=∠2已知请问老师的提示中①是 ,②是 .初三数学周二统测三答题纸 2018.03.20班级 姓名 学号 一、选择题(本题共24分,每小题3分)题号 1 2 3 4 5 6 7 8答案 B C A B A D C D二、填空题(本题共24分,每小题3分)两个空前1后29、 2xx12 10、1(答案不唯一,0<m<211、 2 12、 8, 9 xy10013、y 14、 AD、BC(或EF、DF) DG2CG2CD2 3x 100 315、 两组对边分别相等的四边形是平行四边形.16、①是 ∠1+∠2=∠3+∠2 ,②是 AB=BC .三、解答题解答应写出文字说明,演算步骤或证明过程.217.(5分)计算:1 1 3276tan30.1518.(5分)已知m23m7,求代数式2m1m1m12的值m23m252x15x1≤119.(5分)求不等式组 3 2的正整数解5x23(x2)由①得x1 2分由②得x4 3分∴不等式组解集是1x4,4分 正整数解为1,2,3. 5分20.(5分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BEDF.(1)求证:四边形AECF是平行四边形;(2)若BC10,BAC90,且四边形AECF是菱形,求BE的长.(1)证明:∵四边形ABCD是平行四边形,AD∥BC,且ADBC,AF∥EC,BEDF,AFEC.……………………………………………1分四边形AECF是平行四边形.……………….………2分(2)解: 四边形AECF是菱形,AEEC,…………….....................................…..…3分12.BAC90,3902,4901,34,AEBE,……………....……………………………………………………………4分BEAECE1BC5.……………………………………………….......…5分221.(5分)已知反比例函数y=k(k≠0)的图象经过点A(-1,6).x(1)求k的值;(2)过点A作直线AC与函数y=k的图象交于点B,与x轴交于点C,且AB=x2BC,求点B的坐标.解:(1)由题意,得k6.解得k6.------1分(2)①当点B在第二象限时,如图1. 过点A作AE⊥x轴于E,过点B作BF⊥x轴于F. ∴AE∥BF. ∴BFCB. ∵AB=2BC, ∴CB1. ∵AE=6,∴BF=2.当y=2时,2AE CA6,解得x=-3.∴B(-3,2). -CA 3x 87A3分 65A76②当点B在第四象限时,如图2, 543232E1CF同①可求点B(1,-6).CF E1-----O-12345综上所述,点B的坐标为(-3,2)或(1,-6).----5分-----O-------12345x ---- B--22.(5分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若sinC= 3,半径OA=3,求AE的长.3(1)证明:连接OD. ∵OB=OD,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC. …………1分∵DF⊥AC,∴OD⊥DF.∴DF是⊙O的切线. …………2分(2)解:连结BE,AD.∵AB是直径,∴∠ADB=90°,∠AEB=90°.∵AB=AC,∴∠ABC=∠C,BD=CD.在Rt△ABD中,由题意可求出AD23,BD26.…………3分∴BC46.在Rt△BCE中,可求出CE=8. …………4分∴AE=CE-AC=2. …………5分23.(5分)阅读下列材料:日前,微信发布《2016微信春节大数据报告》显示,2016年除夕当日,利用微信传递春节祝福的音视频通话时长达4.2亿分钟,是2015年除夕的4倍,"红包不要停"成为春节期间最热门微信表情,其作者共获得124508元的"赞赏".报告显示,除夕当日,微信红包的参与者达4.2亿人,收发总量达80.8亿个,是2015年除夕的8倍.除了通常的定额红包、拼手气红包,除夕到初一期间,微信还推出可以添加照片的拜年红包、引爆朋友圈的红包照片,以及和诸多品牌商家联合推出的摇一摇红包.其中,在除夕当日拼手气红包的收发量约为微信红包收发总量的20%.作为一款"国民社交平台",微信在春节通过红包激活了用户的使用热情,用音视频通话、朋友圈、微信群等串联起了五湖四海的情感,实现了科技与人文的交汇,成为"过好春节"的标配.根据以上材料回答下列问题:2分(1)2016年除夕当日,拼手气红包收发量约为亿个;3分(2)选择统计表或.统计图将2015年和2016年除夕当日微信红包收发总量和音视频的通话时长表示出来.(1)16.16;(2)统计表如下:2015年和2016年除夕当日微信红包收发总量和音视频的通话时长统计表 微信红包收发总量 音视频通话时长2015年 10.1亿个 1.05亿分钟2016年 80.8亿个 4.2亿分钟24.(5分)某"数学兴趣小组"根据学习函数的经验,对函数yx22x1的图象和性质进行了探究,探究过程如下,请补充完整:1分(1)自变量x的取值范围是全体实数,x与y的几组对应数值如下表:x … -3 52 -2 -1 0 1 2 52 3 …y … 2 14 -1 m -1 -2 -1 14 2 …其中m= -2 ;2分(2)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象; 4y3211分(3)根据函数图象,写出该函数的一条性质: x;1分(4)若关于x的方程x22x1m有4个互不相等的实根,则此四个根之和为 0 .-4-3-2-1o 1 2 3 4-1-2-3-425.(6分)已知:直线l:yx2与过点(0,﹣2),且与平行于x轴的直线交于点A,点A关于直线x1的对称点为点B.(1)求A,B两点的坐标;(2)若抛物线yx2bxc经过A,B两点,求抛物线解析式;(3)若抛物线yx2bxc的顶点在直线l上移动,当抛物线与线段AB有一个公共点时,求抛物线顶点横坐标t的取值范围.25.解:(1) 由题可知A点的纵坐标为2, 点A在直线l上,∴A4,2.由对称性可知B2,2. 2分(2) 抛物线yx2bxc过点A,B,164bc2∴42bc2b2解得c6∴抛物线解析式为yx22x6 4分(3) 抛物线yx2bxc顶点在直线l上由题可知,抛物线顶点坐标为t,t2∴抛物线解析式可化为yxt2t2.把A4,2代入解析式可得24t2t2解得t13,t24.∴4t3.把B2,2代入解析式可得2t2t22.解得t30,t45∴0t5.综上可知t的取值范围时4t3或0t5. 6分26.(6分)对于两个已知图形G1,G2,在G1上任.取.一点P,在G2上任.取.一点Q,当线段PQ的长度最小时,我们称这个最小长度为G1,G2的"密距",用字母d表示;当线段PQ的长度最大时,我们称这个最大的长度为图形G1,G2的"疏距",用字母f表示.例如,当M(1,2),N(2,2)时,点O与线.段.M.N.的"密距"为5,点O与线.段.M.N.的"疏距"为22.(1)已知,在平面直角坐标系xOy中,A2,0,B0,4,C2,0,D0,1,①点O与线段AB的"密距"为,"疏距"为 ;②线段AB与△COD的"密距"为,"疏距"为 ;(2)直线y2xb与x轴,y轴分别交于点E,F,以C0,1为圆心,1为半径作圆,当⊙C与线段EF的"密距"0<d<1时,求⊙C与线段EF的"疏距"f的取值范围.备用图4.解:(1)①55;4;②35;25; 4分5(2)当点F在y轴的正半轴时当d=0时,f=2;(直线过原点)当d=1时,yF yO Exy CO E Q HE O xG x CC HF F图1 图3图2,如图1,EG=1,则EC=2,由OC=1,得到OE=3,∴OF=23,∴f=23+2,∴2<f<23+2当点F在y轴的负半轴时,当d=0时,如图2,f=5+1;当d=1时,如图3,QH=1,则PH=2,∵Rt△PHF∽Rt△OEF,∴PF=25,∴OF=25+1,∴5+1<f<25+1.综上所述,当0<d<1时,当点F在y轴的正半轴时,2<f<23+2,当点F在y轴的负半轴时,5+1<f<25+1. 6分或综上2<f<25+1.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。