资源资源简介:
免费北京市平谷区中考数学二模试卷含答案解析中考数学模拟试卷分析网2016年北京市平谷区中考数学二模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.中共中央、国务院近日印发的《国家创新驱动发展战略纲要》强调,要增强企业创新能力,发展壮大创新型企业家群体,推动创新创业,激发全社会创造活力.据悉,2015年全社会研发资金达14000多亿元.将14000用科学记数法表示应为()A.0.14×105 B.1.4×104 C.1.4×105 D.0.14×1062.数轴上的点A,B位置如图所示,则线段AB的长度为()A.﹣3 B.5 C.6 D.73.如图,有5张扑克牌,从中随机抽取一张,点数是2的倍数的概率为()A. B. C. D.4.如图是一个几何体的三视图,则该几何体的展开图可以是()A. B. C. D.5.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PM垂直于l,若∠1=58°,则∠2的度数为()A.58° B.90° C.32° D.38°6.如图,已知:矩形ABCD中对角线,AC,BD交于点O,E是AD中点,连接OE.若OE=3,AD=8,则对角线AC的长为()A.5 B.6 C.8 D.107.如图,是某工厂去年4~10月全勤人数的折线统计图,则图中统计数据的众数为()A.46 B.42 C.32 D.278.如图,为测量一棵与地面垂直的树BC的高度,在距离树的底端4米的A处,测得树顶B的仰角∠α=74°,则树BC的高度为()A.米 B.4sin74°米 C.4tan74°米 D.4cos74°米9.数学活动课上,四位同学围绕作图问题:"如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q."分别作出了下列四个图形,其中作法错误的为()A. B. C. D.10.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在边AB和BC上移动,若点P的运动路程为x,DP=y,则y关于x的函数图象大致为()A. B. C. D.二、填空题(本题共18分,每小题3分)11.分解因式:3x3+6x2y+3xy2=.12.若分式的值为0,则x的值为.13.有一条抛物线开口向上,对称轴在y轴右侧,这条抛物线的表达式可能是(写出一个即可).14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:"今有共买鸡,人出八,盈三;人出七,不足四,问人数、鸡价各几何?"译文:"今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数有多少人,鸡的价钱是多少?"设人数有x人,鸡的价钱是y钱,可列方程组为.15.在?ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.16.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△OA1B1的顶点A1的坐标是;△B6A7B7的顶点A7的坐标是;△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()﹣1+|1﹣|﹣+6tan30°.18.已知m2﹣3m=7,求代数式(2m+1)(m﹣1)﹣(m+1)2的值.19.已知:如图,直线y=kx﹣1(k≠0)经过点A.(1)求此直线与x轴,y轴的交点坐标;(2)当y>0时,x的取值范围是.20.如图,四边形ABCD中,AD=2AB,E是AD的中点,AC平分∠BAD,连接CE.求证:CB=CE.21.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?22.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.线段CD绕点C顺时针旋转60°得到线段CE,连接AE.(1)求证:AE=BD;(2)若∠ADC=30°,AD=3,BD=4.求CD的长.23.已知:a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根.(1)求n的取值范围;(2)若等腰三角形三边长分别为a,b,2,求n的值.24.青少年"心理健康"问题越来越引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次"心理健康"知识测试,随机抽取了部分学生的成绩作为样本,绘制了频率分布表和频率分布直方图的一部分.学生心理健康测试成绩频率统计表分组 频数 频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率统计表中的m=;(2)请补全学生心理健康测试成绩频数统计图;(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分﹣70分(含60分)为一般,70分﹣90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康状况扇形统计图.25.如图,△ABC中,AB=AC,以边BC为直径的⊙O与边AB,AC分别交于D,F两点,过点D作⊙O的切线DE,使DE⊥AC于E.(1)求证:△ABC是等边三角形;(2)过点E作EH⊥BC,垂足为点H,连接FH,若BC=4,求FH的长.26.对于自变量x的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数.分段函数在不同的定义域上,函数的表达式也不同.例如:y=是分段函数.当x≥0时,它是二次函数y=x2﹣2x,当x<0时,它是正比例函数y=2x.(1)请在平面直角坐标系中画出函数y=的图象;(2)请写出y轴右侧图象的最低点的坐标是;(3)当y=﹣1时,求自变量x的值.27.反比例函数y=(k≠0)过A(3,4),点B与点A关于直线y=2对称,抛物线y=﹣x2+bx+c过点B和C(0,3).(1)求反比例函数的表达式;(2)求抛物线的表达式;(3)若抛物线y=﹣x2+bx+m在﹣2≤x<2的部分与y=无公共点,求m的取值范围.28.已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD(点C,F在直线AB的两侧),连接DC,DF,CF.①依题意补全图1;②判断△CDF的形状并证明;(2)如图2,E是直线BC上的一点,直线AE,CD相交于点P,且∠APD=45°.求证:BD=CE.29.如果一条抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为A,B(点A在点B的左侧),顶点为P,连接PA,PB,那么称△PAB为这条抛物线的"抛物线三角形".(1)请写出"抛物线三角形"是等腰直角三角形时,抛物线的表达式(写出一个即可);(2)若抛物线y=﹣x2+bx(b>0)的"抛物线三角形"是等边三角形,求b的值;(3)若△PAB是抛物线y=﹣x2+c的"抛物线三角形",是否存在以点A为对称中心的矩形PBCD?若存在,求出过O,C,D三点的抛物线的表达式;若不存在,说明理由.2016年北京市平谷区中考数学二模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.中共中央、国务院近日印发的《国家创新驱动发展战略纲要》强调,要增强企业创新能力,发展壮大创新型企业家群体,推动创新创业,激发全社会创造活力.据悉,2015年全社会研发资金达14000多亿元.将14000用科学记数法表示应为()A.0.14×105 B.1.4×104 C.1.4×105 D.0.14×106【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14000=1.4×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.数轴上的点A,B位置如图所示,则线段AB的长度为()A.﹣3 B.5 C.6 D.7【考点】数轴.【专题】压轴题.【分析】此题借助数轴用数形结合的方法求解.结合数轴,求得两个点到原点的距离之和即线段AB的长度.【解答】解:数轴上的点A,B位置如图所示,则线段AB的长度为B点坐标减去A点坐标即2﹣(﹣5)=7.故选D.【点评】本题考查数轴上两点间距离的求法:右边点的坐标减去左边点的坐标;或两点坐标差的绝对值.3.如图,有5张扑克牌,从中随机抽取一张,点数是2的倍数的概率为()A. B. C. D.【考点】概率公式.【分析】由有5张扑克牌,从中随机抽取一张,点数是2的倍数的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵有6张扑克牌,从中随机抽取一张,点数是2的倍数的有2种情况,∴从中随机抽取一张,点数是2的倍数的概率是:.故选:B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.如图是一个几何体的三视图,则该几何体的展开图可以是()A. B. C. D.【考点】由三视图判断几何体;几何体的展开图.【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱,再根据圆柱展开图的特点即可求解.【解答】解:∵主视图和左视图是长方形,∴该几何体是柱体,∵俯视图是圆,∴该几何体是圆柱,∴该几何体的展开图可以是.故选:A.【点评】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.同时考查了几何体的展开图.5.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PM垂直于l,若∠1=58°,则∠2的度数为()A.58° B.90° C.32° D.38°【考点】平行线的性质.【分析】由平行线的性质得出∠3=∠1=58°,由垂直的定义得出∠MPQ=90°,即可得出∠2的度数.【解答】解:如图所示:∵a∥b,∴∠3=∠1=58°,∵PM⊥l,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣58°=32°;故选C.【点评】本题考查了平行线的性质、垂线的定义、角的互余关系;熟练掌握平行线的性质,弄清各个角之间的关系是解决问题的关键.6.如图,已知:矩形ABCD中对角线,AC,BD交于点O,E是AD中点,连接OE.若OE=3,AD=8,则对角线AC的长为()A.5 B.6 C.8 D.10【考点】矩形的性质.【分析】由矩形的性质得出OA=OC,∠ADC=90°,证出OE是△ACD的中位线,由三角形中位线定理得出CD=2OE=6,再由勾股定理求出AC即可.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠ADC=90°,∵E是AD中点,∴OE是△ACD的中位线,∴CD=2OE=6,∴AC===10;故选:D.【点评】此题考查了平行四边形的性质、三角形中位线定理、勾股定理;熟练掌握平行四边形的性质,由三角形中位线定理求出CD是解决问题的关键.7.如图,是某工厂去年4~10月全勤人数的折线统计图,则图中统计数据的众数为()A.46 B.42 C.32 D.27【考点】众数;折线统计图.【分析】根据众数的定义回答:众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中32是出现次数最多的,故众数是32.故选C.【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.8.如图,为测量一棵与地面垂直的树BC的高度,在距离树的底端4米的A处,测得树顶B的仰角∠α=74°,则树BC的高度为()A.米 B.4sin74°米 C.4tan74°米 D.4cos74°米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.【解答】解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=ACotanα=4tanα(米).故选C.【点评】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.9.数学活动课上,四位同学围绕作图问题:"如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q."分别作出了下列四个图形,其中作法错误的为()A. B. C. D.【考点】作图-基本作图.【专题】作图题.【分析】根据对称的性质对B进行判断;根据作已知线段的垂直平分线对C进行判断;根据圆周角定理对D进行判断.【解答】解:A、没有任何作法依据,A选项的作法错误;B、作了P点关于l的对称点,则PQ⊥l,所以B选项的作法正确;C、作了线段的垂直平分线,则PQ⊥l,所以C选项的作法正确;D、作了直径所对的圆周角,则PQ⊥l,所以D选项的作法正确.故选A.【点评】本题考查了基本作图:掌握5个基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).注意D选项要运用圆周角定理判断.10.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在边AB和BC上移动,若点P的运动路程为x,DP=y,则y关于x的函数图象大致为()A. B. C. D.【考点】动点问题的函数图象.【专题】数形结合.【分析】结合图形特点可知点P在A→B路线移动时,DP长在增大,在B→C路线移动时,DP长在减少,通过矩形的边长可以得出xy轴上的值从而确认答案.【解答】解:∵AB=3,BC=4,∠A=90°∴当动点P在A→B路线移动时,DP2=AP2+AD2=x2+16(0≤x≤3)∴本段图象应为抛物线,且y随x增大而增大同理可得动点P在B→C路线移动时,DP2=CP2+DC2=(7﹣x)2+9(3<x≤7)∴本段图象应为抛物线,且y随x增大而减少故选:B【点评】本题考查了勾股定理、二次函数图象性质,解题的关键是将点P按A→B→C的方向移动时两种情况进行分类讨论.二、填空题(本题共18分,每小题3分)11.分解因式:3x3+6x2y+3xy2=3x(x+y)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取3x,再利用完全平方公式分解即可.【解答】解:3x3+6x2y+3xy2=3x(x2+2xy+y2)=3x(x+y)2,故答案为3x(x+y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.若分式的值为0,则x的值为4..【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由x﹣4=0,得x=4,由x+2≠0,得x≠﹣2.综上,得x=4,即x的值为4.故答案为:4.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.有一条抛物线开口向上,对称轴在y轴右侧,这条抛物线的表达式可能是(写出一个即可)答案不唯一,如:y=x2﹣2x.【考点】二次函数的性质.【分析】根据抛物线开口向上,可得出a>0,再由左同右异的原则,可得出b<0,从而得出抛物线的解析式(答案不唯一).【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴b<0,∴抛物线的解析式为y=x2﹣2x,故答案为y=x2﹣2x(答案不唯一).【点评】本题考查了二次函数的性质,该题是结论开放型题型,通过开口方向,对称轴的位置反映的数量关系写二次函数解析式.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:"今有共买鸡,人出八,盈三;人出七,不足四,问人数、鸡价各几何?"译文:"今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数有多少人,鸡的价钱是多少?"设人数有x人,鸡的价钱是y钱,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设人数有x人,鸡的价钱是y钱,根据每人出8钱,多余3钱得出等量关系一:鸡的价钱=8×买鸡人数﹣3;根据每人出7钱,还缺4钱得出等量关系二:鸡的价钱=7×买鸡人数+4,依此两个等量关系列出方程组即可.【解答】解:设人数有x人,鸡的价钱是y钱,由题意得.故答案为.【点评】此题考查了由实际问题抽象出二元一次方程组,根据鸡价得到等量关系是解决本题的关键.15.在?ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.【考点】平行四边形的性质.【专题】压轴题.【分析】首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.【解答】解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=×70°=35°.故答案为:55°或35°.【点评】此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.16.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△OA1B1的顶点A1的坐标是(1,);△B6A7B7的顶点A7的坐标是(13,);△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【考点】坐标与图形变化﹣旋转;等边三角形的性质.【专题】规律型.【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出An的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,),∴△B6A7B7的顶点A7的坐标是(13,),故答案为:(1,)、(13,)、(4n+1,).【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出An的横坐标、纵坐标各是多少.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()﹣1+|1﹣|﹣+6tan30°.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】本题涉及负整数指数幂、绝对值、二次根式化简、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:()﹣1+|1﹣|﹣+6tan30°=4+﹣1﹣3+6×=4+﹣1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值、二次根式化简、特殊角的三角函数值等考点的运算.18.已知m2﹣3m=7,求代数式(2m+1)(m﹣1)﹣(m+1)2的值.【考点】整式的混合运算-化简求值.【专题】计算题;整式.【分析】原式利用多项式乘多项式,完全平方公式化简,去括号合并后将已知等式变形后代入计算即可求出值.【解答】解:原式=2m2﹣2m+m﹣1﹣m2﹣2m﹣1=m2﹣3m﹣2,∵m2﹣3m=7,∴原式=7﹣2=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:如图,直线y=kx﹣1(k≠0)经过点A.(1)求此直线与x轴,y轴的交点坐标;(2)当y>0时,x的取值范围是x>.【考点】一次函数图象上点的坐标特征.【分析】(1)先根据直线y=k﹣1过点A(﹣1,﹣3)求出k的值,进而可得出直线的解析式,求出此直线与坐标轴的交点即可;(2)根据直线与x轴的交点可直接得出结论.【解答】解:(1)∵直线y=k﹣1过点A(﹣1,﹣3),∴﹣k﹣1=﹣3.∴k=2,∴y=2x﹣1.令x=0时,得y=﹣1,∴直线与与y轴交于(0,﹣1).令y=0时,x=,∴直线与x轴交于(,0).(2)∵直线与x轴交于(,0),∴当x>时,y>0故答案为:x>.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.如图,四边形ABCD中,AD=2AB,E是AD的中点,AC平分∠BAD,连接CE.求证:CB=CE.【考点】全等三角形的判定与性质.【分析】直接利用已知得出AB=AE,再结合角平分线的性质得出∠BAC=∠EAC,进而得出△ABC≌△AEC(SAS),进而得出答案.【解答】证明:∵E是线段AD的中点,∴AD=2AE,∵AD=2AB,∴AB=AE,∵AC平分∠BAD,∴∠BAC=∠EAC,在△ABC和△AEC中∴△ABC≌△AEC(SAS),∴CB=CE.【点评】此题主要考查了全等三角形的判定与性质,正确把握全等三角形的判定方法是解题关键.21.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造10%,结果提前3天完成了任务,求原计划每天改造道路多少米?【考点】分式方程的应用.【分析】设原计划每天改造道路x米,实际每天改造(1+10%)x米,根据比原计划每天多改造10%,结果提前3天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x米,实际每天改造(1+10%)x米,根据题意得:=+3,解得:x=100,经检验x=100是原方程的解,且符合题意.答:原计划每天改造道路100米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题的等量关系是:工作总量=工作效率×工作时间.22.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.线段CD绕点C顺时针旋转60°得到线段CE,连接AE.(1)求证:AE=BD;(2)若∠ADC=30°,AD=3,BD=4.求CD的长.【考点】旋转的性质;全等三角形的判定与性质.【分析】(1)根据AC=BC、∠DCE+∠ACD=∠ACB+∠ACD、CE=CD证△ACE≌△BCD即可;(2)连接DE,可得△DCE是等边三角形,即∠CDE=60°、DC=DE,继而在RT△ADE中,由勾股定理可得DE的长,即可知CD.【解答】解:(1)∵△ABC是等边三角形,∴AC=BC,∠ACB=60°.由旋转的性质可得:CE=CD,∠DCE=60°.∴∠DCE+∠ACD=∠ACB+∠ACD,即∠ACE=∠BCD.在△ACE≌△BCD中,∵,∴△ACE≌△BCD.∴AE=BD.(2)连接DE.∵CD=CE,∠DCE=60°,∴△DCE是等边三角形.∴∠CDE=60°,DC=DE.∵∠ADC=30°,∴∠ADC+∠CDE=90°.∵AD=3,BD=4,∴AE=BD=4.在Rt△ADE中,由勾股定理,可得DE===.∴DC=DE=.【点评】本题主要考查旋转的性质、全等三角形的判定与性质及勾股定理的应用,连接DE发现等边三角形与直角三角形是解题的关键.23.已知:a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根.(1)求n的取值范围;(2)若等腰三角形三边长分别为a,b,2,求n的值.【考点】根与系数的关系;三角形三边关系;等腰三角形的性质.【分析】(1)方程有实数根,则△≥0,建立关于n的不等式,求出m的取值范围.(2)由三角形是等腰三角形,得到两种情况①a=2或b=2,②a=b;①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.【解答】解:(1)由题意,得△=b2﹣4ac=(﹣6)2﹣4(n﹣1)=40﹣4n,∵a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴40﹣4n≥0.∴n≤10.(2))∵三角形是等腰三角形,∴①a=2或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,舍去;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,综上所述,n=10.【点评】本题考查了等腰三角形的性质,一元二次方程的根,一元二次方程根的判别式.解题时,注意分类讨论思想的应用.24.青少年"心理健康"问题越来越引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次"心理健康"知识测试,随机抽取了部分学生的成绩作为样本,绘制了频率分布表和频率分布直方图的一部分.学生心理健康测试成绩频率统计表分组 频数 频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率统计表中的m=16;(2)请补全学生心理健康测试成绩频数统计图;(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分﹣70分(含60分)为一般,70分﹣90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康状况扇形统计图.【考点】扇形统计图;频数(率)分布表;频数(率)分布直方图.【专题】统计与概率.【分析】(1)根据表格中的数据可以算出抽取的学生总数,从而可以得到m的值;(2)根据表格中数据和计算出的m的值,可以将条形统计图补充完整;(3)根据题意可以得到良好率和优秀率,从而可以将扇形统计图补充完整.【解答】解:(1)由表格可得,抽取的学生数为:4÷0.08=50,∴m=50×0.32=16,故答案为:m=16;(2)补全的学生心理健康测试成绩频数统计图如下图所示,(3)由题意可得,良好率:(0.32+0.12)×100%=44%,优秀率:0.2×100%=20%,故补全的学生心理健康状况扇形统计图,如上图所示,【点评】本题考查扇形统计图、频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件.25.如图,△ABC中,AB=AC,以边BC为直径的⊙O与边AB,AC分别交于D,F两点,过点D作⊙O的切线DE,使DE⊥AC于E.(1)求证:△ABC是等边三角形;(2)过点E作EH⊥BC,垂足为点H,连接FH,若BC=4,求FH的长.【考点】切线的性质;垂径定理.【分析】(1)连接OD.由切线的性质可知OD⊥DE,接下来可证明OD∥AC,由平行线的性质和等腰三角形的性质可证明∠OBD=∠ODB,依据等量代换可得到∠A=∠OBD,于是可证明AC=BC,然后结合已知条件可证明△ABC是等边三角形.(2)连接BF,作FG⊥BC于点G,连接DC.由直径所对的圆周角是90°证明BF⊥AC,DC⊥AB,由等腰三角形三线合一的性质可得到AD=BD=AF=FC=2,然后再在△FCG中,依据特殊锐角三角函数值可求得FG、CG的长,接下来证明DE∥BF,依据平行线分线段成比例定理可得到AE=EF=1,于是在△EHC中依据特殊锐角三角函数值可求得CE=3,CH=1.5,最后在△HFG中,依据勾股定理可求得HF的长.【解答】解:(1)证明:如图1所示:连接OD.∵DE是⊙O的切线,∴OD⊥DE.∵DE⊥AC,∴OD∥AC.∴∠A=∠ODB.∵OB=OD,∴∠OBD=∠ODB.∴∠A=∠OBD.∴AC=BC.∵AB=AC,∴AB=AC=BC.∴△ABC是等边三角形.(2)解:连接BF,作FG⊥BC于点G,连接DC.∵BC是⊙O的直径,∴∠BFC=90°.∵△ABC为等边三角形,∴CF=AC=BC=2.同理;BD=AD=2.∵∠C=60°,∠FGC=90°,∴FG=FC=,CG=FC=1.∵DE⊥AC,BF⊥AC,∴DE∥BF.∴AE=EF=1.∴CE=3,CH=1.5.∴HG=.在Rt△FGH中,由勾股定理可得FH==.【点评】本题主要考查的是切线的性质、圆周角定理、等腰三角形的性质、等边三角形的判定、平行线分线段成比例定理、勾股定理的应用,求得FG和HG的长是解题的关键.26.对于自变量x的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数.分段函数在不同的定义域上,函数的表达式也不同.例如:y=是分段函数.当x≥0时,它是二次函数y=x2﹣2x,当x<0时,它是正比例函数y=2x.(1)请在平面直角坐标系中画出函数y=的图象;(2)请写出y轴右侧图象的最低点的坐标是(1,﹣1);(3)当y=﹣1时,求自变量x的值.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的最值.【分析】(1)根据抛物线的画法和直线的画法作图即可,注意自变量的取值范围;(2)求出抛物线的顶点坐标(1,﹣1)即可;(3)把y=﹣1代入两个函数的解析式即可得出自变量x的值.【解答】解:(1)如图所示,(2)∵y轴右侧图象是抛物线,∴y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1,∴最低点坐标(1,﹣1);故答案为(1,﹣1);(3)当y=﹣1时,2x=﹣1,∴x=﹣,当y=﹣1时,x2﹣2x=﹣1,∴x=1,∴当y=﹣1时,自变量x的值为x=1或﹣.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的图象和性质,以及二次函数的最值,掌握二次函数的图象和性质是解题的关键.27.反比例函数y=(k≠0)过A(3,4),点B与点A关于直线y=2对称,抛物线y=﹣x2+bx+c过点B和C(0,3).(1)求反比例函数的表达式;(2)求抛物线的表达式;(3)若抛物线y=﹣x2+bx+m在﹣2≤x<2的部分与y=无公共点,求m的取值范围.【考点】二次函数的性质;反比例函数的性质.【分析】(1)将点(3,4)代入反比例函数的解析式即可求出k的值.(2)求出点B的坐标,然后将B与C的坐标代入即可求出抛物线的解析式即可求出b与c的值.(3)令x=2和﹣2代入反比例函数中求出相应的点坐标,然后将两点的坐标代入y=﹣x2+2x+m中求出m的值【解答】解:(1)∵反比例函数y=过A(3,4),∴k=12,∴y=(2)∵点B与点A关于直线y=2对称,∴B(3,0).∵抛物线y=﹣x2+bx+c过点B和C(0,3)∴∴∴y=﹣x2+2x+3(3)反比例函数的解析式:y=令x=﹣2时,y=﹣6,即(﹣2,﹣6)令x=2时,y=6,即(2,6)当y=﹣x2+2x+m过点(﹣2,﹣6)时,m=2当当y=﹣x2+2x+m过点(2,6)时,m=6∴y=﹣x2+2x+m在﹣2≤x<2的部分与y=无公共点时,此时m的范围:2<m≤6,【点评】本题考查二次函数的综合问题,解题的关键是求出相关点的坐标,然后利用待定系数法求出系数的值,本题属于中等题型.28.已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD(点C,F在直线AB的两侧),连接DC,DF,CF.①依题意补全图1;②判断△CDF的形状并证明;(2)如图2,E是直线BC上的一点,直线AE,CD相交于点P,且∠APD=45°.求证:BD=CE.【考点】三角形综合题.【分析】(1)①根据条件画出图形即可.②结论:△CDF是等腰直角三角形.只要证明△FAD≌△DBC即可解决问题.(2)如图2中,过点A作AF⊥AB,并截取AF=BD,连接DF、CF.先证明AF=BD,再证明四边形AFCE是平行四边形即可解决问题.【解答】解:(1)①补全图形,如图1所示,②结论:△CDF是等腰直角三角形.理由:∵∠ABC=90°,AF⊥AB,∴∠FAD=∠DBC,在△FAD和△DBC中,∴△FAD≌△DBC,∴FD=DC.∠1=∠2,∵∠1+∠3=90°,∴∠2+∠3=90°.即∠CDF=90°,∴△CDF是等腰直角三角形.(2)如图2中,过点A作AF⊥AB,并截取AF=BD,连接DF、CF.∵∠ABC=90°,AF⊥AB,∴∠FAD=∠DBC,在△FAD和△DBC中,∴△FAD≌△DBC,∴FD=DC,∠1=∠2,∵∠1+∠3=90°,∴∠2+∠3=90°.即∠CDF=90°,∴△CDF是等腰直角三角形,∴∠FCD=∠APD=45°,∴FC∥AE,∵∠ABC=90°,AF⊥AB,∴AF∥CE,∴四边形AFCE是平行四边形,∴AF=CE,∴BD=CE.【点评】本题考查三角形综合题、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是熟练掌握全等三角形的证明,学会添加常用辅助线,构造全等三角形以及特殊四边形解决问题,属于中考常考题型.≌29.如果一条抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为A,B(点A在点B的左侧),顶点为P,连接PA,PB,那么称△PAB为这条抛物线的"抛物线三角形".(1)请写出"抛物线三角形"是等腰直角三角形时,抛物线的表达式(写出一个即可)y=﹣x2+1;(2)若抛物线y=﹣x2+bx(b>0)的"抛物线三角形"是等边三角形,求b的值;(3)若△PAB是抛物线y=﹣x2+c的"抛物线三角形",是否存在以点A为对称中心的矩形PBCD?若存在,求出过O,C,D三点的抛物线的表达式;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)取A(﹣1,0),B(1,0),C(0,1)三点,求出过A、B、C三点的抛物线即可.(2)如图1中,过点P作PH⊥AB于H,△PAB是等边三角形,根据PH=AH,列出方程即可解决问题.(3)如图2中,作△ACD与△APB关于点A中心对称,则四边形PBCD为平行四边形,当PC=BD时,平行四边形PBCD为矩形,即PA=AB,推出△APB为等边三角形,由此求出D、C坐标即可解决问题.【解答】解:(1)答案不唯一,当A(﹣1,0),B(1,0),C(0,1)时,△ABC是等腰直角三角形,此时经过A、B、C三点的抛物线为y=﹣x2+1,故答案为y=﹣x2+1.(2)∵抛物线y=﹣x2+bx(b>0)的"抛物线三角形"是等边直角三角形,又∵该抛物线的顶点(,),如图1中,过点P作PH⊥AB于H,∵△PAB是等边三角形,∴PH=AH,∴=,∴b=2.(3)如图2中,作△ACD与△APB关于点A中心对称,则四边形PBCD为平行四边形,当PC=BD时,平行四边形PBCD为矩形,即PA=AB,∴△APB为等边三角形,由(2)作法可知,P(0,3),∴A(﹣,0),B(,0),由中心对称图形的性质可知,D(﹣3,0),C(﹣2,﹣3),设过O、C、D三点的抛物线为y=ax2+bx,则解得,∴O,C,D三点的抛物线的表达式为:y=x2+x.【点评】本题考查二次函数综合题、等边三角形的判定和性质、矩形的判定和性质、待定系数法确定函数解析式等知识,解题的关键是充分利用等边三角形性质,求出关键点的坐标,属于中考常考题型.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。