资源资源简介:
2016年各地中考数学解析版分类汇编(第2期)点直线与圆的位置关系点直线与圆的位置关系一、选择题:1.(2016海南3分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠∠PAO=50°,∴∠ABC=∠PAO=25°.故选:B.【点评】本题考查了切线的性质,圆周角定理.圆的切线垂直于经过切点的半径.2.(2016·山东潍坊·3分)如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10B.8C.4D.2【考点】切线的性质;坐标与图形性质.【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.3.(2016·湖北荆州·3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°【分析】根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.【点评】本题考查了切线的性质,切线的性质得出=是解题关键,又利用了圆周角定理.二、填空题1.(2016·黑龙江哈尔滨·3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【考点】切线的性质.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.2.(2016·内蒙古包头·3分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.【考点】切线的性质.【分析】在RT△POC中,根据∠P=30°,PC=3,求出OC、OP即可解决问题.【解答】解:∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PCotan30°=,PC=2OC=2,∴PB=PO﹣OB=,故答案为.3.(2016·湖北随州·3分)如图(1),PT与⊙O1相切于点T,PAB与⊙O1相交于A、B两点,可证明△PTA∽△PBT,从而有PT2=PAoPB.请应用以上结论解决下列问题:如图(2),PAB、PCD分别与⊙O2相交于A、B、C、D四点,已知PA=2,PB=7,PC=3,则CD=.【考点】相似三角形的判定与性质;切线的性质.【分析】如图2中,过点P作⊙O的切线PT,切点是T,根据PT2=PAoPB=PCoPD,求出PD即可解决问题.【解答】解:如图2中,过点P作⊙O的切线PT,切点是T.∵PT2=PAoPB=PCoPD,∵PA=2,PB=7,PC=3,∴2×7=3×PD,∴PD=∴CD=PD﹣PC=﹣3=.4.(2016·四川攀枝花)如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.【考点】切线的性质.【分析】过点0作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可.【解答】解:过点0作OE⊥AB于点E,OF⊥BC于点F.∵AB、BC是⊙O的切线,∴点E、F是切点,∴OE、OF是⊙O的半径;∴OE=OF;在△ABC中,∠C=90°,AC=3,AB=5,∴由勾股定理,得BC=4;又∵D是BC边的中点,∴S△ABD=S△ACD,又∵S△ABD=S△ABO+S△BOD,∴ABoOE+BDoOF=CDoAC,即5×OE+2×0E=2×3,解得OE=,∴⊙O的半径是.故答案为:.【点评】本题考查了切线的性质与三角形的面积.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.5.(2016·四川南充)如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是50mm. 【分析】根据已知条件得到CM=30,AN=40,根据勾股定理列方程得到OM=40,由勾股定理得到结论. 【解答】解:如图,设圆心为O, 连接AO,CO, ∵直线l是它的对称轴, ∴CM=30,AN=40, ∵CM2+OM2=AN2+ON2, ∴302+OM2=402+(70﹣OM)2, 解得:OM=40, ∴OC==50, ∴能完全覆盖这个平面图形的圆面的最小半径是50mm. 故答案为:50. 【点评】本题考查的圆内接四边形,是垂径定理,根据题意画出图形,利用数形结合进行解答是解答此题的关键. 5.(2016·黑龙江齐齐哈尔·3分)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=45度.【考点】切线的性质;平行四边形的性质.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.三、解答题1.(2016·湖北随州·8分)如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tanA=,求⊙O的直径.【考点】直线与圆的位置关系;垂径定理;相似三角形的判定与性质.【分析】(1)连接OB,由圆的半径相等和已知条件证明∠OBD=90°,即可证明BD是⊙O的切线;(2)过点D作DG⊥BE于G,根据等腰三角形的性质得到EG=BE=5,由两角相等的三角形相似,△ACE∽△DGE,利用相似三角形对应角相等得到sin∠EDG=sinA=,在Rt△EDG中,利用勾股定理求出DG的长,根据三角形相似得到比例式,代入数据即可得到结果.【解答】(1)证明:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)如图,过点D作DG⊥BE于G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴sin∠EDG=sinA==,即CE=13,在Rt△ECG中,∵DG==12,∵CD=15,DE=13,∴DE=2,∵△ACE∽△DGE,∴=,∴AC=oDG=,∴⊙O的直径2OA=4AD=.2.(2016·湖北武汉·8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.【考点】切线的性质;考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角,弧,弦之间的关系的应用【答案】(1)略;(2)【解析】(1)证明:连接OC,则OC⊥CD,又AD⊥CD,∴AD∥OC,∴∠CAD=∠OCA,又OA=OC,∴∠OCA=∠OAC,∴∠CAD=∠CAO,∴AC平分∠DAB.(2)解:连接BE交OC于点H,易证OC⊥BE,可知∠OCA=∠CAD,∴COS∠HCF=,设HC=4,FC=5,则FH=3.又△AEF∽△CHF,设EF=3x,则AF=5x,AE=4x,∴OH=2x∴BH=HE=3x+3OB=OC=2x+4在△OBH中,(2x)2+(3x+3)2=(2x+4)2化简得:9x2+2x-7=0,解得:x=(另一负值舍去).∴.3.(2016·江西·8分)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.【考点】切线的性质;垂径定理.【分析】(1)连接BC、OC,利用圆周角定理和切线的性质可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代换可得∠DPC=∠ACD,可证得结论;(2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形.【解答】(1)证明:连接BC、OC,∵AB是⊙O的直径,∴∠OCD=90°,∴∠OCA+∠OCB=90°,∵∠OCA=∠OAC,∠B=∠OCB,∴∠OAC+∠B=90°,∵CD为切线,∴∠OCD=90°,∴∠OCA+∠ACD=90°,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,∴∠DPC=∠ACD,∴AP=DC;(2)解:以A,O,C,F为顶点的四边形是菱形;∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.4.(2016·辽宁丹东·10分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DEoAE,∴16=2(2+AD),∴AD=6.5.(2016·四川南充)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心OC为半径作半圆. (1)求证:AB为⊙O的切线; (2)如果tan∠CAO=,求cosB的值. 【分析】(1)如图作OM⊥AB于M,根据角平分线性质定理,可以证明OM=OC,由此即可证明. (2)设BM=x,OB=y,列方程组即可解决问题. 【解答】解:(1)如图作OM⊥AB于M, ∵OA平分∠CAB,OC⊥AC,OM⊥AB, ∴OC=OM, ∴AB是⊙O的切线, (2)设BM=x,OB=y,则y2﹣x2=1①, ∵cosB==, ∴=, ∴x2+3x=y2+y②, 由①②可以得到:y=3x﹣1, ∴(3x﹣1)2﹣x2=1, ∴x=,y=, ∴cosB==. 【点评】本题考查切线的判定、勾股定理、三角函数等知识,解题的关键是记住圆心到直线的距离等于半径,这条直线就是圆的切线,学会设未知数列方程组解决问题,属于中考常考题型. 6.(2016·四川内江)(10分)如图9,在△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)试判断BD与⊙O的位置关系,并说明理由;(2)当AB=BE=1时,求⊙O的面积;(3)在(2)的条件下,求HG·HB的值.[考点]切线的性质与判定定理,三角形的全等,直角三角形斜边上中线定理、勾股定理。(1)直线BD与⊙O相切.理由如下:如图,连接OB,∵BD是△ABC斜边上的中线,∴DB=DC.∴∠DBC=∠C.∵OB=OE,∴∠OBE=∠OEB=∠CED.∵∠C+∠CED=90°,∴∠DBC+∠OBE=90°.∴BD与⊙O相切; 3分(2)连接AE.∵AB=BE=1,∴AE=.∵DF垂直平分AC,∴CE=AE=.∴BC=1+. 4分∵∠C+∠CAB=90°,∠DFA+∠CAB=90°,∴∠CAB=∠DFA.又∠CBA=∠FBE=90°,AB=BE,∴△CAB≌△FEB.∴BF=BC=1+. 5分∴EF2=BE2+BF2=12+(1+)2=4+2. 6分∴S⊙O=π·EF2=π. 7分(3)∵AB=BE,∠ABE=90°,∴∠AEB=45°.∵EA=EC,∴∠C=22.5°. 8分∴∠H=∠BEG=∠CED=90°-22.5°=67.5°.∵BH平分∠CBF,∴∠EBG=∠HBF=45°.∴∠BGE=∠BFH=67.5°.∴BG=BE=1,BH=BF=1+. 9分∴GH=BH-BG=.∴HB·HG=×(1+)=2+. 10分3.(2016·四川宜宾)如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.【考点】切线的判定与性质.【分析】(1)作OH⊥PE,由PO是∠APE的角平分线,得到∠APO=∠EPO,判断出△PAO≌△PHO,得到OH=OA,用"圆心到直线的距离等于半径"来得出直线PE是⊙O的切线;(2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可.【解答】证明:(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线.(2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH,∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴===,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴EH2=EG×EA=EG×(EG+AG)=×(+2)=,∴EH=.4.(2016·湖北黄石·8分)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【解答】(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.【点评】此题主要考查的是切线的判定方法.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.5.(2016·湖北黄石·12分)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1,l2于M,N两点.(1)求双曲线C及直线l2的解析式;(2)求证:PF2﹣PF1=MN=4;(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为AB=.)【分析】(1)利用点A的坐标求出a的值,根据原点对称的性质找出直线l2上两点的坐标,求出解析式;(2)设P(x,),利用两点距离公式分别求出PF1、PF2、PM、PN的长,相减得出结论;(3)利用切线长定理得出,并由(2)的结论PF2﹣PF1=4得出PF2﹣PF1=QF2﹣QF1=4,再由两点间距离公式求出F1F2的长,计算出OQ和OB的长,得出点Q与点B重合.【解答】解:(1)解:把A(﹣2,﹣1)代入y=中得:a=(﹣2)×(﹣1)=2,∴双曲线C:y=,∵直线l1与x轴、y轴的交点分别是(2,0)、(0,2),它们关于原点的对称点分别是(﹣2,0)、(0,﹣2),∴l2:y=﹣x﹣2(2)设P(x,),由F1(2,2)得:PF12=(x﹣2)2+(﹣2)2=x2﹣4x+﹣+8,∴PF12=(x+﹣2)2,∵x+﹣2==>0,∴PF1=x+﹣2,∵PM∥x轴∴PM=PE+ME=PE+EF=x+﹣2,∴PM=PF1,同理,PF22=(x+2)2+(+2)2=(x++2)2,∴PF2=x++2,PN=x++2因此PF2=PN,∴PF2﹣PF1=PN﹣PM=MN=4,(3)△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,∴?PF2﹣PF1=QF2﹣QF1=4又∵QF2+QF1=F1F2=4,QF1=2﹣2,∴QO=2,∵B(,),∴OB=2=OQ,所以,点Q与点B重合.【点评】此题主要考查了圆的综合应用以及反比例函数的性质等知识,将代数与几何融合在一起,注意函数中线段的长可以利用本题给出的两点距离公式解出,也可以利用勾股定理解出;解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.6.(2016·湖北荆门·8分)如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.【考点】切线的判定;角平分线的性质.【分析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC∥FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.【解答】(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:连接BC,在Rt△ACE中,AC===,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴=,∴,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.7.(2016·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.8.(2016·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.9.(2016·青海西宁·10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.【考点】切线的判定与性质.【分析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;(2)根据已知条件得到△CDA∽△CBD由相似三角形的性质得到,求得CD=4,由切线的性质得到BE=DE,BE⊥BC根据勾股定理列方程即可得到结论.【解答】(1)证明:连结OD,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∵OD是⊙O半径,∴CD是⊙O的切线(2)解:∵∠C=∠C,∠CDA=∠CBD∴△CDA∽△CBD∴∵,BC=6,∴CD=4,∵CE,BE是⊙O的切线∴BE=DE,BE⊥BC∴BE2+BC2=EC2,即BE2+62=(4+BE)2解得:BE=.10.(2016·陕西)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BCoBG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BCoBG.11.(2016·四川眉山)九年级三班学生苏琪为帮助同桌万宇巩固"平面直角坐标系四个象限内及坐标轴上的点的坐标特点"这一基础知识,在三张完全相同且不透明的卡片正面分别写上了﹣3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,再从剩下的两张中随机取出一张,将卡片上的数字记为b,然后叫万宇在平面直角坐标系中找出点M(a,b)的位置.(1)请你用树状图帮万宇同学进行分析,并写出点M所有可能的坐标;(2)求点M在第二象限的概率;(3)张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O,过点M能作多少条⊙O的切线?请直接写出答案.【分析】(1)画树状图展示所有6种等可能的结果数;(2)根据第二象限点的坐标特征找出点M在第二象限的结果数,然后根据概率公式求解;(3)画出图形得到在⊙O上的有2个点,在⊙O外的有2个点,在⊙O内的有2个点,则利用切线的定义可得过⊙O上的有2个点分别画一条切线,过⊙O外的有2个点分别画2条切线,但其中有2组切线重合,于是可判断过点M能作4条⊙O的切线.【解答】解:(1)画树状图为共有6种等可能的结果数,它们是(﹣3,0)、(﹣3,2)、(0,﹣3)、(0,2)、(2,﹣3)、(2,0);(2)只有(﹣3,2)在第二象限,所以∴点M在第二象限的概率=;(3)如图,过点M能作4条⊙O的切线.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.利用切线的定义可解决(3)小题,应用数形结合的思想是解决此类题目的关键.12.(2016·福建龙岩·10分)如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.(1)求证:CD是⊙O的切线;(2)若AD=1,OA=2,求AC的值.【考点】切线的判定.【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,由等腰三角形的性质得出∠B=∠BCO,证出∠OCD=∠OCA+∠BCO=∠ACB=90°,即可得出结论;(2)证明△ACB∽△ADC,得出AC2=ADoAB,即可得出结果.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠ACB=90°,∵OB=OC,∴∠B=∠BCO,又∵∠ACD=∠B,∴∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=∠ACB=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∵AD⊥CD,∴∠ADC=∠ACB=90°,又∵∠ACD=∠B,∴△ACB∽△ADC,∴AC2=ADoAB=1×4=4,∴AC=2.13.(2016·广西百色·10分)如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.【考点】切线的性质.【分析】(1)由AB为⊙O的直径,AC为⊙O的切线,易证得∠CAD=∠BDO,继而证得结论;(2)由(1)易证得△CAD∽△CDE,然后由相似三角形的对应边成比例,求得CD的长,再利用勾股定理,求得答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CAoCE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.14.(2016广西南宁)在图"书香八桂,阅读圆梦"读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目(2016o南宁)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.【考点】切线的判定.【专题】计算题;与圆有关的位置关系.【分析】(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直径,即可得证;(2)由OD与BC平行得到三角形OAD与三角形BAC相似,由相似得比例求出OA的长,进而确定出AB的长,连接EF,过O作OG垂直于BC,利用勾股定理求出BG的长,由BG+GC求出BC的长,再由三角形BEF与三角形BAC相似,由相似得比例求出BE的长即可.【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∵OD∥BC,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.【点评】此题考查了切线的判定,相似三角形的判定与性质,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解本题的关键.15.(2016贵州毕节)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【考点】切线的判定.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CBE=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,在Rt△BFD中,BF=DFotan60°=×=3,∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,∴=,∴CB=4.16.(2016·山东省滨州市·4分)如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.【考点】切线的性质;正方形的性质.【分析】(1)根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,根据矩形的性质得到EF=BC,根据切割线定理得到PD2=DFoCD,于是得到结论.【解答】解:(1)连接OP,BF,PF,∵⊙O与AD相切于点P,∴OP⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OP∥CD,∴∠PFD=∠OPF,∵OP=OF,∴∠OPF=∠OFP,∴∠OFP=∠PFD,∴PF平分∠BFD;(2)连接EF,∵∠C=90°,∴BF是⊙O的直径,∴∠BEF=90°,∴四边形BCFE是矩形,∴EF=BC,∵AB∥OP∥CD,BO=FO,∴OP=AD=CD,∵PD2=DFoCD,即()2=oCD,∴CD=4,∴EF=BC=4.【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.17.(2016·山东省德州市·4分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.【考点】圆的综合题.【分析】(1)连接OE、OB、OC.由题意可证明,于是得到∠BOE=∠COE,由等腰三角形三线合一的性质可证明OE⊥BC,于是可证明OE⊥l,故此可证明直线l与⊙O相切;(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.【解答】解:(1)直线l与⊙O相切.理由:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴,即,解得;AE=.∴AF=AE﹣EF=﹣7=.【点评】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得∠EBF=∠EFB是解题的关键.18.(2016·山东省东营市·8分)如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=53,AB∶BC=2∶3,求圆的直径.【知识点】与圆有关的位置关系--切线的判定、锐角三角函数--三角函数的求法【思路分析】(1)根据∠ABD=∠ACB和∠ACB+∠DBC=90°可得∠ABC=90°,然后根据切线的判定定理可判断AB是圆的切线;(2)根据BE=4,tan∠AEB=53先求出AB的长,再根据AB∶BC=2∶3求出BC的长,即得直径.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ACB+∠DBC=90°.又∵∠ABD=∠ACB,∴∠ABD+∠DBC=90°,∴AB⊥BC.又∵点B在圆上,∴AB是圆的切线.(2)解:在Rt△AEB中,tan∠AEB=53,∴ABBE=53,即AB=53BE=53×4=203.∵AB∶BC=2∶3,∴BC=32AB=32×203=10.∴圆的直径为10.【方法总结】本题考查了切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线.圆中有半径时,可应用"直径所对的圆周角是直角"来得到直角三角形.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和特殊角的三角函数值.也考查锐角的三角函数值,考虑将已知锐角的三角函数值转化为直角三角形的边之比,来解决问题.19.(2016·山东省菏泽市·3分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【考点】切线的判定;切割线定理.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。