资源资源简介:
2016年高考试题(数学理科)北京卷详解版2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0(B)3(C)4(D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则"IaI=IbI"是"Ia+bI=Ia-bI"的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,yR,且xyo,则(A)-(B)(C)(-0(D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________。(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A,B两点,则=____________________.(12)已知为等差数列,为其前n项和,若,,则.(13)双曲线的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点。若正方形OABC的边长为2,则a=_______________.(14)设函数①若a=0,则f(x)的最大值为____________________;②若f(x)无最大值,则实数a的取值范围是_________________。三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)(15)(本小题13分)在ABC中,(I)求的大小(II)求的最大值(16)(本小题13分)A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A班 66.577.58B班 6789101112C班 34.567.5910.51213.5(I)试估计C班的学生人数;(II)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(III)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记,表格中数据的平均数记为,试判断和的大小,(结论不要求证明)(17)(本小题14分)如图,在四棱锥P-ABCD中,平面PAD平面ABCD,PAPD,PA=PD,ABAD,AB=1,AD=2,AC=CD=,(I)求证:PD平面PAB;(II)求直线PB与平面PCD所成角的正弦值;(III)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求的值;若不存在,说明理由。(18)(本小题13分)设函数f(x)=xe+bx,曲线y=f(x)dhko(2,f(2))处的切线方程为y=(e-1)x+4,(I)求a,b的值;(II)求f(x)的单调区间。(19)(本小题14分)已知椭圆C:(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(I)求椭圆C的方程;(II)设P的椭圆C上一点,直线PA与Y轴交于点M,直线PB与x轴交于点N。求证:lANllBMl为定值。(20)(本小题13分)设数列A:,,…(N≥2)。如果对小于n(2≤n≤N)的每个正整数k都有<,则称n是数列A的一个"G时刻"。记"G(A)是数列A的所有"G时刻"组成的集合。(I)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(II)证明:若数列A中存在使得>,则G(A);(III)证明:若数列A满足-≤1(n=2,3,…,N),则G(A)的元素个数不小于-。2016年北京高考数学(理科)答案与解析1. C【解析】集合,集合,所以.2. C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为,最大值为.3.B【解析】开始,;第一次循环,;第二次循环,,第三次循环,条件判断为"是"跳出,此时.4.D【解析】若成立,则以,为边组成平行四边形,那么该平行四边形为菱形,,表示的是该菱形的对角线,而菱形的对角线不一定相等,所以不一定成立,从而不是充分条件;反之,成立,则以,为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以不一定成立,从而不是必要条件.5.C【解析】.考查的是反比例函数在单调递减,所以即所以错;.考查的是三角函数在单调性,不是单调的,所以不一定有,错;.考查的是指数函数在单调递减,所以有即所以对;考查的是对数函数的性质,,当时,不一定有,所以错.6.A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高,底面积,所以体积.7.A【解析】点在函数上,所以,然后向左平移个单位,即,所以,所以的最小值为.8.B【解析】取两个球往盒子中放有种情况:①红+红,则乙盒中红球数加个;②黑+黑,则丙盒中黑球数加个;③红+黑(红球放入甲盒中),则乙盒中黑球数加个;④黑+红(黑球放入甲盒中),则丙盒中红球数加个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机.③和④对B选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.综上,选B.9.【解析】∵其对应点在实轴上∴,10.【解析】由二项式定理得含的项为11.【解析】将极坐标转化为直角坐标进行运算,直线的直角坐标方程为∵,∴圆的直角坐标方程为圆心在直线上,因此为圆的直径,12.【解析】∵∴∵,∴∴13.2【解析】不妨令为双曲线的右焦点,在第一象限,则双曲线图象如图∵为正方形,∴,∵直线是渐近线,方程为,∴又∵∴14.,.【解析】由,得,如下图,是的两个函数在没有限制条件时的图象.⑴;⑵当时,有最大值;当时,在时无最大值,且.所以,.15.【解析】⑴ ∵∴∴∴⑵∵∴∴∵∴∴∴最大值为1上式最大值为116.【解析】⑴,C班学生40人⑵在A班中取到每个人的概率相同均为设班中取到第个人事件为C班中取到第个人事件为班中取到的概率为所求事件为则⑶三组平均数分别为总均值但中多加的三个数据平均值为,比小,故拉低了平均值17.【解析】⑴∵面面面面∵,面∴面∵面∴又∴面⑵取中点为,连结,∵∴∵∴以为原点,如图建系易知,,,,则,,,设为面的法向量,令,则与面夹角有⑶假设存在点使得面设,由(2)知,,,,有∴∵面,为的法向量∴即∴∴综上,存在点,即当时,点即为所求.18.【解析】(I)∴∵曲线在点处的切线方程为∴,即①②由①②解得:,(II)由(I)可知:, 令,∴
极小值
∴的最小值是∴的最小值为即对恒成立∴在上单调递增,无减区间.19.【解析】⑴由已知,,又,解得∴椭圆的方程为.⑵方法一:设椭圆上一点,则.直线:,令,得.∴直线:,令,得.∴将代入上式得故为定值.方法二:设椭圆上一点,直线PA:,令,得.∴直线:,令,得.∴故为定值.20.【解析】⑴⑵因为存在,设数列中第一个大于的项为,则,其中,所以,.⑶设数列的所有"时刻"为,对于第一个"时刻",有,,则.对于第二个"时刻",有().则.类似的,…,.于是,.对于,若,则;若,则,否则由⑵,知中存在"时刻",与只有个"时刻"矛盾.从而,,证毕
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。