资源资源简介:
2016年新课标Ⅲ普通高等学校招生全国统一考试理科数学真题含答案解析绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S=,则ST=(A)[2,3](B)(-,2][3,+)(C)[3,+)(D)(0,2][3,+)(2)若z=1+2i,则(A)1(B)-1(C)i(D)-i(3)已知向量,则ABC=(A)300(B)450(C)600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是(A)各月的平均最低气温都在00C以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C的月份有5个(5)若,则(A)(B)(C)1(D)(6)已知,,,则(A)(B)(C)(D)(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6(8)在中,,BC边上的高等于,则(A)(B)(C)(D)(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)(B)(C)90(D)81(10)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π(B) (C)6π(D)(11)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A) (B) (C) (D)(12)定义"规范01数列"{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的"规范01数列"共有(A)18个 (B)16个 (C)14个 (D)12个第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件则z=x+y的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。(15)已知f(x)为偶函数,当时,,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。(16)已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若,则__________________.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知数列的前n项和,,其中0(I)证明是等比数列,并求其通项公式(II)若,求(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。(19)(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB;(II)求直线AN与平面PMN所成角的正弦值.(20)(本小题满分12分)已知抛物线C:的焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.(I)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(21)(本小题满分12分)设函数f(x)=acos2x+(a-1)(cosx+1),其中a>0,记的最大值为A.(Ⅰ)求f'(x);(Ⅱ)求A;(Ⅲ)证明≤2A.请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(I)若∠PFB=2∠PCD,求∠PCD的大小;(II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为,以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为.(I)写出的普通方程和的直角坐标方程;学.科网(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I)当a=2时,求不等式的解集;(II)设函数当时,f(x)+g(x)≥3,求a的取值范围.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。