资源资源简介:
2016年高考理科数学试题及解析全套打包绝密★启封并使用完毕前试题类型:A2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则(A)(B)(C)(D)(2)设,其中x,y是实数,则(A)1(B)(C)(D)2(3)已知等差数列前9项的和为27,,则(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)(B)(C)(D)(5)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(-1,3)(B)(-1,3)(C)(0,3)(D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17π(B)18π(C)20π(D)28π(7)函数y=2x2-e|x|在[-2,2]的图像大致为(A)(B)(C)(D)(8)若,则(A)(B)(C)(D)(9)执行右面的程序图,如果输入的,则输出x,y的值满足(A)(B)(C)(D)(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2(B)4(C)6(D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,平面ABA1B1=n,则m、n所成角的正弦值为(A)(B)(C)(D)12.已知函数为的零点,为图像的对称轴,且在单调,则的最大值为(A)11(B)9(C)7(D)5第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.(14)的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为。(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元。三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本题满分为12分)的内角A,B,C的对边分别别为a,b,c,已知(I)求C;(II)若的面积为,求的周长.(18)(本题满分为12分)如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,,且二面角D-AF-E与二面角C-BE-F都是.(I)证明平面ABEFEFDC;(II)求二面角E-BC-A的余弦值.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?20.(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,学科&网过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.(21)(本小题满分12分)已知函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,学科.网证明:+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以⊙O为圆心,OA为半径作圆.(I)证明:直线AB与O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0)。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1是哪种曲线,学.科.网并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a。(24)(本小题满分10分),选修4-5:不等式选讲已知函数f(x)=∣x+1∣-∣2x-3∣.(I)在答题卡第(24)题图中画出y=f(x)的图像;(II)求不等式∣f(x)∣﹥1的解集。2016年普通高等学校招生全国统一考试理科数学参考答案一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)D(2)B(3)C(4)B(5)A(6)A(7)D(8)C(9)C(10)B(11)A(12)B二、填空题:本大题共4小题,每小题5分(13)(14)10(15)64(16)三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分为12分)解:(I)由已知及正弦定理得,,即.故.可得,所以.(II)由已知,.又,所以.由已知及余弦定理得,.故,从而.所以的周长为.(18)(本小题满分为12分)解:(I)由已知可得,,所以平面.又平面,故平面平面.(II)过作,垂足为,由(I)知平面.以为坐标原点,的方向为轴正方向,为单位长度,建立如图所示的空间直角坐标系.由(I)知为二面角的平面角,故,则,,可得,,,.由已知,,所以平面.又平面平面,故,.由,可得平面,所以为二面角的平面角,.从而可得.所以,,,.设是平面的法向量,则,即,所以可取.设是平面的法向量,则,同理可取.则.故二面角的余弦值为.学科&网(19)(本小题满分12分)解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而;;;;;;.所以的分布列为 16 17 18 19 20 21 22 (Ⅱ)由(Ⅰ)知,,故的最小值为19.(Ⅲ)记表示2台机器在购买易损零件上所需的费用(单位:元).当时,.学科&网当时,.可知当时所需费用的期望值小于时所需费用的期望值,故应选.20.(本小题满分12分)解:(Ⅰ)因为,,故,所以,故.又圆的标准方程为,从而,所以.由题设得,,,由椭圆定义可得点的轨迹方程为:().(Ⅱ)当与轴不垂直时,设的方程为,,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.学科&网可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.(21)(本小题满分12分)解:(Ⅰ).(i)设,则,只有一个零点.(ii)设,则当时,;当时,.所以在上单调递减,在上单调递增.又,,取满足且,则,故存在两个零点.(iii)设,由得或.若,则,故当时,,因此在上单调递增.又当时,,所以不存在两个零点.学科&网若,则,故当时,;当时,.因此在单调递减,在单调递增.又当时,,所以不存在两个零点.综上,的取值范围为.(Ⅱ)不妨设,由(Ⅰ)知,,在上单调递减,所以等价于,即.由于,而,所以.设,则.所以当时,,而,故当时,.从而,故.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲解:(Ⅰ)设是的中点,连结,因为,所以,.在中,,即到直线的距离等于圆的半径,所以直线与⊙相切.(Ⅱ)因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作直线.由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以.同理可证,.所以.(23)(本小题满分10分)解:⑴ (均为参数)∴ ①∴为以为圆心,为半径的圆.方程为∵∴ 即为的极坐标方程⑵ 学科&网两边同乘得即 ②:化为普通方程为由题意:和的公共方程所在直线即为①-②得:,即为∴∴(24)(本小题满分10分)解:⑴ 如图所示:⑵ 当,,解得或当,,解得或或当,,解得或或综上,或或,解集为新课标第一网系列资料www.xkb1vvvvv2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m的取值范围是(A)(B)(C)(D)(2)已知集合,,则(A)(B)(C)(D)(3)已知向量,且,则m=(A)-8(B)-6(C)6(D)8(4)圆的圆心到直线的距离为1,则a=(A)(B)(C)(D)2(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A)24(B)18(C)12(D)9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π(7)若将函数y=2sin2x的图像向左平移π12个单位长度,则评议后图象的对称轴为(A)x=kπ2-π6(k∈Z)(B)x=kπ2+π6(k∈Z)(C)x=kπ2-π12(k∈Z)(D)x=kπ2+π12(k∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=(A)7(B)12(C)17(D)34(9)若cos(π4-α)=35,则sin2α=(A)725(B)15(C)-15(D)-725(10)从区间随机抽取2n个数,,…,,学科&网,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率的近似值为(A)(B)(C)(D)(11)已知F1,F2是双曲线E的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为(A)(B)(C)(D)2(12)已知函数学.科网满足,若函数与图像的交点为则(A)0(B)m(C)2m(D)4m第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC的内角A、B、C的对边分别为a、b、c,若cosA=,cosC=,a=1,则b=.(14)α、β是两个平面,m、n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,mα,那么m∥β.学科.网(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:"我与乙的卡片上相同的数字不是2",学.科网乙看了丙的卡片后说:"我与丙的卡片上相同的数字不是1",丙说:"我的卡片上的数字之和不是5",则甲的卡片上的数字是。(16)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=。三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.(I)求;(II)求数列的前1000项和.18.(本题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数 0 1 2 3 4 5
保费 0.85a a 1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数 0 1 2 3 4 5
概率 0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(III)求续保人本年度的平均保费与基本保费的比值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△的位置,.学.科.网(I)证明:平面ABCD;(II)求二面角的正弦值.20.(本小题满分12分)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当t=4,时,求△AMN的面积;(II)当时,求k的取值范围.(21)(本小题满分12分)(I)讨论函数的单调性,并证明当>0时,(II)证明:当时,函数有最小值.设g(x)的最小值为,求函数的值域.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:集合证明选讲如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(I)证明:B,C,E,F四点共圆;(II)若AB=1,E为DA的中点,求四边形BCGF的面积.学科&网(23)(本小题满分10分)选修4-4:坐标系与参数方程在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25.(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(II)直线l的参数方程是(t为参数),l与C交于A、B两点,∣AB∣=,求l的斜率。(24)(本小题满分10分),选修4-5:不等式选讲已知函数f(x)=∣x-∣+∣x+∣,M为不等式f(x)<2的解集.(I)求M;(II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。2016年普通高等学校招生全国统一考试理科数学答案第Ⅰ卷一.选择题:(1)【答案】A(2)【答案】C(3)【答案】D(4)【答案】A(5)【答案】B(6)【答案】C(7)【答案】B(8)【答案】C(9)【答案】D(10)【答案】C(11)【答案】A(12)【答案】C第Ⅱ卷二、填空题(13)【答案】(14)【答案】②③④(15)【答案】1和3(16)【答案】三.解答题17.(本题满分12分)【答案】(Ⅰ),,;(Ⅱ)1893.【解析】试题分析:(Ⅰ)先求公差、通项,再根据已知条件求;(Ⅱ)用分段函数表示,学.科.网再由等差数列的前项和公式求数列的前1000项和.试题解析:(Ⅰ)设的公差为,据已知有,学.科.网解得所以的通项公式为(Ⅱ)因为所以数列的前项和为考点:等差数列的的性质,前项和公式,学.科网对数的运算.【结束】18.(本题满分12分)【答案】(Ⅰ)根据互斥事件的概率公式求解;(Ⅱ)由条件概率公式求解;(Ⅲ)记续保人本年度的保费为,学.科网求的分布列为,在根据期望公式求解..【解析】试题分析:试题解析:(Ⅰ)设表示事件:"一续保人本年度的保费高于基本保费",则事件发生当且仅当一年内出险次数大于1,故(Ⅱ)设表示事件:"一续保人本年度的保费比基本保费高出",则事件发生当且仅当一年内出险次数大于3,故又,故因此所求概率为(Ⅲ)记续保人本年度的保费为,则的分布列为
因此续保人本年度的平均保费与基本保费的比值为考点:条件概率,随机变量的分布列、期望.【结束】19.(本小题满分12分)【答案】(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)证,再证,最后证;(Ⅱ)用向量法求解.试题解析:(I)由已知得,,又由得,故.因此,从而.由,得.由得.学.科网所以,.于是,,故.又,而,所以.(II)如图,以为坐标原点,的方向为轴的正方向,学.科网建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取.于是,.因此二面角的正弦值是.考点:线面垂直的判定、二面角.【结束】20.(本小题满分12分)【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试题解析:(I)设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.将代入得.解得或,学.科网所以.因此的面积.(II)由题意,,.将直线的方程代入得.由得,故.由题设,直线的方程为,故同理可得,由得,学科&网即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系.【结束】(21)(本小题满分12分)【答案】(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)先求定义域,用导数法求函数的单调性,学科&网当时,证明结论;(Ⅱ)用导数法求函数的最值,在构造新函数,又用导数法求解.试题解析:(Ⅰ)的定义域为.且仅当时,,所以在单调递增,因此当时,所以(II)由(I)知,单调递增,对任意因此,存在唯一使得即,当时,单调递减;当时,单调递增.因此在处取得最小值,最小值为于是,由单调递增所以,由得因为单调递增,对任意存在唯一的使得所以的值域是综上,当时,有,的值域是考点:函数的单调性、极值与最值.【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲【答案】(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)证再证四点共圆;(Ⅱ)证明四边形的面积是面积的2倍.试题解析:(I)学科&网因为,所以则有所以由此可得由此所以四点共圆.(II)由四点共圆,知,连结,由为斜边的中点,知,故因此四边形的面积是面积的2倍,即考点:三角形相似、全等,四点共圆【结束】(23)(本小题满分10分)选修4-4:坐标系与参数方程【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(I)利用,可得C的极坐标方程;(II)先将直线的参数方程化为普通方程,再利用弦长公式可得的斜率.试题解析:(I)由可得的极坐标方程(II)在(I)中建立的极坐标系中,学科&网直线的极坐标方程为由所对应的极径分别为将的极坐标方程代入的极坐标方程得于是由得,所以的斜率为或.考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式.【结束】(24)(本小题满分10分)选修4-5:不等式选讲【答案】(Ⅰ);(Ⅱ)详见解析.【解析】试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,.试题解析:(I)当时,学科&网由得解得;当时,;当时,由得解得.所以的解集.(II)由(I)知,当时,,从而,因此考点:绝对值不等式,不等式的证明.【结束】绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S=,则ST=(A)[2,3](B)(-,2][3,+)(C)[3,+)(D)(0,2][3,+)(2)若z=1+2i,则(A)1(B)-1(C)i(D)-i(3)已知向量,则ABC=(A)300(B)450(C)600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是学.科.网(A)各月的平均最低气温都在00C以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C的月份有5个(5)若,则(A)(B)(C)1(D)(6)已知,,,则(A)(B)(C)(D)(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6(8)在中,,BC边上的高等于,则(A)(B)(C)(D)(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A)(B)(C)90(D)81(10)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是(A)4π(B) (C)6π(D)(11)已知O为坐标原点,F是椭圆C:的左焦点,学科&网A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A) (B) (C) (D)(12)定义"规范01数列"{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的"规范01数列"共有(A)18个 (B)16个 (C)14个 (D)12个第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件则z=x+y的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。(15)已知f(x)为偶函数,当时,,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。(16)已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若,则__________________.学科.网三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知数列的前n项和,,其中0(I)证明是等比数列,并求其通项公式(II)若,求(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。(19)(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN∥平面PAB;(II)求直线AN与平面PMN所成角的正弦值.(20)(本小题满分12分)已知抛物线C:的焦点为F,学科&网平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.(I)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(21)(本小题满分12分)设函数f(x)=acos2x+(a-1)(cosx+1),其中a>0,记的最大值为A.(Ⅰ)求f'(x);(Ⅱ)求A;(Ⅲ)证明≤2A.请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(I)若∠PFB=2∠PCD,求∠PCD的大小;(II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为,以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为.(I)写出的普通方程和的直角坐标方程;学.科网(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I)当a=2时,求不等式的解集;学科&网(II)设函数当时,f(x)+g(x)≥3,求a的取值范围.绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学正式答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)D(2)C(3)A(4)D(5)A(6)A(7)B(8)C(9)B(10)B(11)A(12)C第II卷本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题未选考题,考生根据要求作答。二、填空题:本大题共3小题,每小题5分(13)(14)(15)(16)4三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)解:(Ⅰ)由题意得,故,,.由,得,即.由,得,所以.因此是首项为,公比为的等比数列,学科.网于是.(Ⅱ)由(Ⅰ)得,由得,即,解得.(18)(本小题满分12分)解:(Ⅰ)由折线图这数据和附注中参考数据得,,,,.因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.(Ⅱ)由及(Ⅰ)得,.所以,关于的回归方程为:.将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.(19)(本小题满分12分)解:(Ⅰ)由已知得,取的中点,连接,由为中点知,.又,故学.科.网平行且等于,四边形为平行四边形,于是.因为平面,平面,所以平面.(Ⅱ)取的中点,连结,由得,从而,且.以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,学科.网由题意知,,,,,,,.设为平面的法向量,则,即,可取,于是.(20)解:由题设.设,则,且.记过两点的直线为,则的方程为......3分(Ⅰ)由于在线段上,故.记的斜率为,的斜率为,则.所以.......5分(Ⅱ)设与轴的交点为,则.由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合.所以,所求轨迹方程为.....12分(21)(本小题满分12分)解:(Ⅰ).(Ⅱ)当时,学科&网因此,.………4分当时,将变形为.令,则是在上的最大值,,,且当时,取得极小值,极小值为.令,解得(舍去),.(ⅰ)当时,在内无极值点,,,,所以.(ⅱ)当时,由,知.又,所以.综上,.………9分(Ⅲ)由(Ⅰ)得.当时,.当时,,所以.当时,,所以.请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4-1:几何证明选讲解:(Ⅰ)连结,则.因为,所以,又,所以.又,所以,因此.(Ⅱ)因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,因此.23.(本小题满分10分)选修4-4:坐标系与参数方程学.科.网解:(Ⅰ)的普通方程为,的直角坐标方程为.……5分(Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以的最小值,即为到的距离的最小值,.………………8分当且仅当时,取得最小值,最小值为,此时的直角坐标为.………………10分24.(本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)当时,.解不等式,得.因此,的解集为.………………5分(Ⅱ)当时,,当时等号成立,所以当时,等价于.①……7分当时,①等价于,无解.当时,①等价于,解得.所以的取值范围是.………………10分2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一个是符合题目要求的。1.已知集合P=,Q=,则P=A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则A.B.C.D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A.B.4C.D.64.命题"使得"的否定形式是A.使得B.使得C.使得D.使得5.设函数,则的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)学.科.网若,为的面积,则A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则A.且B.且C.且D.且8.已知实数.A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。9.若抛物线上的点M到焦点的距离为10,则M到y轴的距离是.10.已知,则A=,b=.11.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.12.已知,若,则a=,b=.13.设数列的前n项和为,若,则=,=.14.如图,在中,AB=BC=2,.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.15.已知向量a,b,|a|=1,|b|=2,学.科.网若对任意单位向量e,均有|a·e|+|b·e|,则a·b的最大值是.三、解答题:本大题共5小题,共74分。解答应写出文字说明,证明过程或演算步骤。16.(本题满分14分)在中,内角所对的边分别为,已知(Ⅰ)证明:(Ⅱ)若的面积,求角A的大小.学科.网17.(本题满分15分)如图,在三棱台中,已知平面BCFE平面ABC,,,,,(Ⅰ)求证:(Ⅱ)求二面角的余弦值.18.(本题满分15分)设,函数,其中(Ⅰ)求使得等式成立的x的取值范围(Ⅱ)(i)求的最小值(ii)求在上的最大值学.科网19.(本题满分15分)如图,设椭圆C:(Ⅰ)求直线被椭圆截得到的弦长(用a,k表示)(Ⅱ)若任意以点为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20、(本题满分15分)设数列满足,(Ⅰ)求证:(Ⅱ)若,,证明:,.学科&网浙江数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算。每小题5分,满分40分.1.B2.C3.C4.D5.B6.A7.A8.D二、填空题:本题考查基本知识和基本运算.多空题每题6分,单空题每题4分,满分16分.9.910.11.72,3212.4,213.1,12114.15.三、解答题:本大题共5小题,共74分。16.本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力。满分14分。(I)由正弦定理得,故,于是.又,,故,所以或,因此(舍去)或,所以,.(II)由得,学.科.网故有,因,得.又,,所以.当时,;当时,.综上,或.17.本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力和运算求解能力。满分15分。(I)延长,,相交于一点,如图所示.因为平面平面,且,所以,平面,因此,.又因为,,,所以为等边三角形,且为的中点,则.所以平面.(II)方法一:过点作,连结.因为平面,学科&网所以,则平面,所以.所以,是二面角的平面角.在中,,,得.在中,,,得.所以,二面角的平面角的余弦值为.方法二:如图,延长,,相交于一点,则为等边三角形.取的中点,则,又平面平面,所以,平面.以点为原点,学.科.网分别以射线,的方向为,的正方向,建立空间直角坐标系.由题意得,,,,,.因此,,,.设平面的法向量为,平面的法向量为.由,得,取;由,得,取.于是,.所以,二面角的平面角的余弦值为.18.本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识。同时考查推理论证能力,分析问题和解决问题的能力。满分15分。(I)由于,故当时,,当时,.所以,使得等式成立的的取值范围为.(II)(i)设函数,,则,,所以,由的定义知,即.(ii)当时,,当时,.所以,.19.本题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。满分15分。(I)设直线被椭圆截得的线段为,由得,故,.因此.(II)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足.记直线,的斜率分别为,,且,,.由(I)知,,,故,所以.由于,,得,因此,①因为①式关于,的方程有解的充要条件是,所以.因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,由得,所求离心率的取值范围为.20.本题主要考查数列的递推关系与单调性、学.科.网不等式性质等基础知识,同时考查推理论证能力、分析问题和解决问题的能力。满分15分。(I)由得,故,,所以,因此.(II)任取,由(I)知,对于任意,,故.从而对于任意,均有.由的任意性得.①否则,存在,有,取正整数且,则,与①式矛盾.综上,对于任意,
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。