资源资源简介:
免费河北区2017年中考《三角形认识》复习练习题及答案中考数学考点要点试卷分类汇编解析网中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个B.6个C.7个D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120°B.130°C.140°D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100°B.120°C.20°或120°D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形B.正七边形C.正八边形D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6B.8C.10D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是()A.52°B.61°C.65°D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A.B.C.D.二、填空题:13、a、b、c为三角形的三条边,则=.14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是.17、已知△ABC的三边长a、b、c,化简│a+b-c│-│b-a-c│的结果是.18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1=.20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=.21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=.22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N=_.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB=度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60°15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c.18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴=10,2=20,BC=24-10=14.三边长分别为:20cm,20cm,14cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴=8,,BC=30-8=22.三边长分别为:16cm,16cm,22cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。(2)如图所示,EF即是△BED中BD边上的高(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED=S△ABC=×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6。27、【解答】解:(1)∵∠B=40°,∠C=80°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠CAE=∠BAC=30°,∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°﹣∠C=10°,∴∠EAD=∠CAE﹣∠CAD=30°﹣10°=20°;(2)∵三角形的内角和等于180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠CAE=∠BAC=(180°﹣∠B﹣∠C),∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C,∴∠EAD=∠CAE﹣∠CAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=∠C﹣∠B.28、【解答】解:(1)∵∠ADB=90°,∴∠ADO=90°﹣∠ODE,∵∠OEB=∠O+∠ODE=30°+∠ODE,∴∠ADO+∠OEB=90°﹣∠ODE+30°+∠ODE=120°,故答案为:120°;(2)如图2,连接OC,∵∠ADO=∠ACO+∠DOC,∠OEB=∠EOC+∠ECO,∠ACE=90°,∠DOE=30°,∴∠ADO+∠OEB=∠ACO+∠DOC+∠EOC+∠ECO,=(∠ACO+∠ECO)+(∠EOC+∠DOC)=∠ACE+∠DOE=90°+30°=120°;(3)如图3,连接OC,∵∠ADO=∠ACO﹣∠DOC,∠OEB=∠EOC+∠ECO,∠ACE=90°,∠DOE=30°,∴∠ADO+∠OEB=∠ACO﹣∠DOC+∠EOC+∠ECO=(∠ACO+∠ECO)+(∠EOC﹣∠DOC)=∠ACE+∠DOE=90°+30°=120°.29、【解答】解:∵P1B、P1C分别平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,(1)∵∠ABC=80°,∠ACB=40°,∴∠A=60°,∴∠P1=30°;(2)∵∠A=α,∴∠P1的度数为α;(3)同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠Pn,∴∠Pn=()nα.故答案为:30°,α,()nα.30、解:(1)证明:连接AP.∵,∴.∵AB=AC,∴.(2)①;②.31、
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。