资源资源简介:
2016年中考数学第二轮专题复习试卷详解第6课:函数第06课函数专题复习1.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是() A.体育场离张强家2.5千米 B.张强在体育场锻炼了15分钟 C.体育场离早餐店4千米 D.张强从早餐店回家的平均速度是3千米/小时2.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式﹣x+m>nx+4n>0的整数解为() A.﹣1 B.﹣5 C.﹣4 D.﹣33.已知点A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y14.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()5.如图,在平面直角坐标系中,□OABC的顶点A在轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将□OABC分割成面积相等的两部分,则直线l的函数解析式是()A. B. C. D.6.若一次函数的图象过第一、三、四象限,则函数()A.有最大值 B.有最大值 C.有最小值 D.有最小值7.已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是() A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>28.由函数y=-12x2的图像平移得到函数y=-12(x-4)2+5的图像,则这个平移是()A.先向左平移4个单位,再向下平移5个单位B.先向左平移4个单位,再向上平移5个单位C.先向右平移4个单位,再向下平移5个单位D.先向右平移4个单位,再向上平移5个单位9.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()10.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数与反比例函数在同一坐标系内的大致图象是()11.下列关于二次函数的说法错误的是()A.抛物线y=-2x2+3x+1的对称轴是直线x=B.点A(3,0)不在抛物线y=x2-2x-3的图象上C.二次函数的顶点坐标是(-2,-2)D.函数y=2x2+4x-3的图象的最低点在(-1,-5)12.已知,,能使y1=y2成立的x的取值为.13.抛物线与轴只有一个公共点,则的值为14.抛物线,若点(-2,5)与点Q关于该抛物线的对称轴对称,则点Q坐标是15.如图,若双曲线与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.16.如图,Rt△AOB的一条直角边OB在x轴上,双曲线经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为.第16题图第17题图第18题图17.如图,在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA解析式为.18.如图,Rt△ABO中,∠AOB=900,点A在第一象限、点B在第四象限,且AO:BO=1:,若点A(x0,y0)的坐标x0,y0满足y0=,则点B(x,y)的坐标x,y所满足的关系式为.19.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上,OA=1,OC=6,则正方形ADEF的边长为.第19题图第20题图第21题图20.已知二次函数的图象如图,有以下结论:①;②;③;④;⑤其中所有正确结论的序号是21.如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线和的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①;②阴影部分面积是;③当∠AOC=900时,;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).22.某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.23.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.24.如图,一次函数的图象与反比例函数的图象相交于A,B两点,与x轴相交于点C.已知,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.25.已知反比例函数和一次函数,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A、B的坐标:(3)根据函数图像,求不等式>2x-1的解集;(4)在(2)的条件下,x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.26.某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?[来源27.如图,抛物线y=x2+mx+(m-1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.28.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转1200,得到线段OB.(1)求经过A、O、B三点的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(3)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.29.如图,函数y1=x+b图象与函数y2=-x2+mx+b图象C/都经过点B(0,1)和点C,且图象C/过点A.(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x方程的根,求a值;(3)若点F、G在图象C/上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.30.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。