资源资源简介:
苏教版2016年江苏省中考数学复习课件+练习(题型6:分类讨论问题)二、选填重难点突破题型六分类讨论问题类型一直角三角形中的分类讨论1.(2015宿迁)在平面直角坐标系中,点A,B的坐标分别为(-3,0)、(3,0),点P在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个B.4个C.5个D.6个2.已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为.类型二等腰三角形中的分类讨论1.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条2.在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是()A.1B.1或C.1或D.或类型三相似三角形中的分类讨论1.(2014常州)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个2.(2015凉山州)在ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD∶S△COB=.类型四圆中的分类讨论在平面直角坐标系xOy中,直线l经过点A(-3,0),点B(0,3),点P的坐标为(1,0),⊙P与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有()A.1个B.2个C.3个D.4个【答案】类型一直角三角形中的分类讨论1.D【解析】如果以AB为直径画圆与双曲线相交,交点有4个,这四个点与AB组成的三角形是直角三角形而且是以AB为斜边,如果以A,B为直角顶点,则双曲线上还有两个点使△ABP为直角三角形,故选D.2.60或42【解析】如解图,作AD⊥BC于点D,则AD为BC边上的高,AD=12,分两种情况:①高AD在三角形内,如解图①所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=,∴BC=BD+DC=16+9=25,所以,△ABC的周长为AB+AC+BC=20+15+25=60.②高AD在三角形外,如解图②所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=,∴BC=BD-DC=16-9=7,所以,△ABC的周长为AB+AC+BC=20+15+7=42.故△ABC的周长为60或42.类型二等腰三角形中的分类讨论1.B【解析】如解图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选B.2.D【解析】分两种情况:如解图①,延长AC,作PD⊥BC交点为D,PE⊥AC,交点为点E,∵CP∥AB,∴∠PCD=∠CBA=45°,∴四边形CDPE是正方形,则CD=DP=PE=EC,∵在等腰Rt△ABC中,AC=BC=1,∴AB=,∴AB=AP=;∴在Rt△AEP中,(1+EC)2+EP2=AP2,∴(1+DP)2+DP2=()2,解得,DP=或DP=(与题意不符,舍去);如解图②,延长BC,作PD⊥BC,交点为D,延长CA,作PE⊥CA,交点为E,同理可证,四边形CDPE是正方形,∴CD=DP=PE=EC,同理可得,在Rt△AEP中,(EC-1)2+EP2=AP2,∴(PD-1)2+PD2=()2,解得,PD=或(与题意不符,舍去).故选D.类型三相似三角形中的分类讨论1.C【解析】∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°-∠B=90°,∴∠PAD=∠PBC=90°,AB=8,AD=3,BC=4,设AP的长为x,则BP长为8-x,若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP∶BP=AD∶BC,即x:(8-x)=3∶4,解得x=;②若△APD∽△BCP,则AP∶BC=AD∶BP,即x∶4=3∶(8-x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选C.2.4∶9或1∶9【解析】如解图,∵M,N是AD边上的三等分点,(1)当时,如解图①,∵四边形ABCD是平行四边形,∴AD∥BC,∴△MOD∽△COB,∴S△MOD∶S△COB=()2=4∶9;(2)当时,如解图②,∵四边形ABCD是平行四边形,∴AD∥BC,∴△MOD∽△COB,∴S△MOD∶S△COB=()2=1∶9.故答案为:4∶9或1∶9.类型四圆中的分类讨论C【解析】如解图所示,∵点P的坐标为(1,0),⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时,设切点为D,由点A坐标为(-3,0),点B坐标为(0,),∴OA=3,OB=,由勾股定理得:AB=2,∠DAM=30°,设平移后圆与直线AB第一次相切时圆心为点M(即对应的P′),∴MD⊥AB,MD=1,又∵∠DAM=30°,∴AM=2,M点的坐标为(-1,0),即对应的P′点的坐标为(-1,0),同理可得圆与直线第二次相切时圆心N的坐标为(-5,0),即对应的P′点坐标为(-5,0),所以当⊙P′与直线l相交时,横坐标为整数的点P′的横坐标可以是-2,-3,-4,共三个.故选C.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。