资源资源简介:
2016年河南省许昌市中考数学二模试卷含答案详解2016年河南省许昌市中考数学一模试卷一、选择题1.下列各数中,大小在﹣1和﹣2之间的数是()A.﹣3 B.﹣ C.0 D.|﹣3|2.一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.长方体 D.正方体3.为提升城市品位,改善城市环境,2015年2月27日,许昌市护城河环通工程开工建设,时隔一年,"桨声欸乃乃何叶碧,一舟环游许昌城"的诗情画意已基本成为现实.据悉,全长约5公里的护城河总蓄水量达37万立方米,将数据37万用科学记数法表示为()A.37×104 B.3.7×104 C.37×105 D.3.7×1054.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°5.某校在体育健康测试中,有8名男生"引体向上"的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,126.已知点P(3﹣m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于BC长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,正确的个数为()A.1个 B.2个 C.3个 D.4个8.如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.2+ C.5 D.4+二、填空题9.计算:2﹣2﹣=.10.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,若DF=2,则FC=.11.请写出一个开口向上,且与y轴交于点(0,1)的二次函数解析式.12.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.13.如图,直线y1=﹣x+b与双曲线y2=交于A、B两点,点A的横坐标为1,则不等式﹣x+b<的解集是.14.如图,在圆心角为90°的扇形OAB中,半径OA=4,C为的中点,D、E分别为OA,OB的中点,则图中阴影部分的面积为.15.如图,在矩形ABCD中,BC=6,CD=8,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B的对应点B′落在矩形ABCD对角线上时,BP=.三、解答题(本题8个小题,共75分)16.先化简,再求值:(a+)÷(a﹣2+),请从﹣1,0,1中选取一个作为a的值代入求值.17.如图,AB是半圆O的直径,点C是半圆O上一点,∠COB=60°,点D是OC的中点,连接BD,BD的延长线交半圆O于点E,连接OE,EC,BC.(1)求证:△BDO≌△EDC.(2)若OB=6,则四边形OBCE的面积为.18.2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地举行有关纪念活动,为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A,B,C,D四类,其中A类表示"非常了解",B类表示"比较了解",C类表示"基本了解";D类表示"不太了解",调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史"非常了解"和"比较了解"的学生共有多少名?19.已知关于x的方程kx2﹣x﹣=0(k≠0).(1)求证:方程总有两个不相等的实数根;(2)若方程的两个根都为整数,求整数k的值,并求出方程的根.20.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向25海里的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时40海里的速度航行半小时到达C处,再向南偏东53°方向航行,同时捕鱼船向正北方向低速航行.若两船航速不变,并且在D处会合,求CD两点的距离和捕鱼船的速度(结果保留整数).(参考数据:≈1.7,sin53°≈,cos53°≈,tan53°≈)21.某超市计划购进甲、乙两种品牌的新型节能台灯20盏,这两种台灯的进价和售价如下表所示: 甲 乙进价(元/件) 40 60售价(元/件) 60 100设购进甲种台灯x盏,且所购进的两种台灯都能全部卖出.(1)若该超市购进这批台灯共用去1000元,问这两种台灯购进多少盏?(2)若购进两种台灯的总费用不超过1100元,那么超市如何进货才能获得最大利润?最大利润是多少?(3)最终超市按照(2)中的方案进货,但实际销售中,由于乙品牌的台灯销售前景不容乐观,超市计划对乙品牌台灯进行降价销售,当毎盏台灯最多降价元时,全部销售后才能使利润不低于550元.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否任然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.23.如图,抛物线y=ax2+bx+4与x轴交于A(﹣2,0),D两点,与y轴交于点C,对称轴x=3交x轴交于点B.(1)求抛物线的解析式.(2)点M是x轴上方抛物线上一动点,过点M作MN⊥x轴于点N,交直线BC于点E.设点M的横坐标为m,用含m的代数式表示线段ME的长,并求出线段ME长的最大值.(3)若点P在y轴的正半轴上,连接PA,过点P作PA垂线,交抛物线的对称轴于点Q.是否存在点P,使以点P、A、Q为顶点的三角形与△BAQ全等?若存在,直接写出点P的坐标;若不存在,请说明理由.2016年河南省许昌市中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,大小在﹣1和﹣2之间的数是()A.﹣3 B.﹣ C.0 D.|﹣3|【考点】估算无理数的大小.【分析】根据各个数据与﹣1和﹣2的比较可以确定答案.【解答】解:A.∵﹣3<﹣2,不在﹣1与﹣2之间,∴A选项错误;B.∵由于1<<2,则﹣2<﹣<﹣1,B选项正确;C.∵0>﹣1,不在﹣1与﹣2之间,∴C选项错误;D.∵|﹣3|=3,∴|﹣3|>﹣1,不在﹣1与﹣2之间,∴D选项错误;故选B.【点评】本题考查了估算有理数以及无理数的大小,也考查了算术平方根,利用完全平方数和算术平方根对无理数的大小进行估算是解答此题的关键.2.一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.长方体 D.正方体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.为提升城市品位,改善城市环境,2015年2月27日,许昌市护城河环通工程开工建设,时隔一年,"桨声欸乃乃何叶碧,一舟环游许昌城"的诗情画意已基本成为现实.据悉,全长约5公里的护城河总蓄水量达37万立方米,将数据37万用科学记数法表示为()A.37×104 B.3.7×104 C.37×105 D.3.7×105【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将37万用科学记数法表示为3.7×105.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°【考点】平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.5.某校在体育健康测试中,有8名男生"引体向上"的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12【考点】众数;中位数.【专题】计算题.【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【解答】解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选C.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数的定义.6.已知点P(3﹣m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(3﹣m,m﹣1)在第四象限,得,解得1<m<3.故选:D.【点评】本题考查了点的坐标,利用第四象限内的点的横坐标大于零,纵坐标小于零得出不等式组是解题关键.7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于BC长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】作图-基本作图;线段垂直平分线的性质.【分析】根据作图可得P到B、C两点距离相等,再由D是BC边的中点可得PD是BC的垂直平分线,进而可得①正确;再根据角的互余关系可证明∠A=∠EBA,故②正确;结论③不能证明,根据三角形中位线定理可得④正确.【解答】解:∵由作图可得P到B、C两点距离相等,又∵点D是BC边的中点,∴PD是BC的垂直平分线,故①正确;∵PD是BC的垂直平分线,∴EB=EC,∴∠C=∠EBC,∵∠ABC=90°,∴∠A+∠C=90°,∠ABE+∠EBC=90°,∴∠A=∠EBA,故②正确;根据所给条件无法证明EB平分∠AED,故③错误;∵∠A=∠EBA,∴AE=BE,∵BE=EC,∴EA=EC,∵D为BC中点,∴DE是△ABC的中位线,∴ED=AB,故④正确;正确的共有3个,故选:C.【点评】此题主要考查了基本作图,关键是掌握线段垂直平分线的作法和性质.8.如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.2+ C.5 D.4+【考点】动点问题的函数图象.【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解答】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,∴,解得,AD=5,又∵BC∥AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=2,∴DE=AD﹣AE=5﹣2=3,∴CD=,∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,故选D.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,能从函数图象中找到我们需要的信息,利用数形结合的思想解答问题.二、填空题9.计算:2﹣2﹣=﹣.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可得到结果.【解答】解:原式=﹣=﹣,故答案为:﹣【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,若DF=2,则FC=4.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】首先证明△DFE∽△BAE,然后利用对应边成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.【解答】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2,∵DF=2,∴FC=4故答案为:4.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.11.请写出一个开口向上,且与y轴交于点(0,1)的二次函数解析式y=x2+x+1(答案不唯一).【考点】二次函数的性质.【专题】开放型.【分析】根据二次函数的性质,开口向上,要求a值大于0即可.【解答】解:∵开口向上,∴a>0,且与y轴的交点为(0,1).故答案为:y=x2+x+1(答案不唯一).【点评】本题考查了二次函数的性质,开放型题目,答案不唯一,所写抛物线的a值必须大于0.12.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有6种等可能的结果数,再找出这两个球上的数字之和为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中这两个球上的数字之和为偶数的结果数为2,所以这两个球上的数字之和为偶数的概率==.故答案为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.13.如图,直线y1=﹣x+b与双曲线y2=交于A、B两点,点A的横坐标为1,则不等式﹣x+b<的解集是0<x<1或x>8.【考点】反比例函数与一次函数的交点问题.【分析】令y1=y2,得出关于x的一元二次方程,将x=1代入可求出b的值,再将b的值代入一元二次方程中可求出x的值,由此得出B点的横坐标,结合函数图象以及A、B点的横坐标即可得出不等式的解集.【解答】解:令y1=y2,则有﹣x+b=,即x2﹣bx+8=0,∵点A的横坐标为1,∴1﹣b+8=0,解得b=9.将b=9代入x2﹣bx+8=0中,得x2﹣9x+8=0,解得x1=1,x2=8.结合函数图象可知:不等式﹣x+b<的解集为0<x<1或x>8.故答案为:0<x<1或x>8.【点评】本题考查了反比例函数与一次函数的交点问题以及一元二次方程的应用,解题的关键是求出B点的横坐标.本题属于基础题,难度不大,解决该题型题目时,借助函数图象,由图象的上下位置可直接得出不等式的解集.14.如图,在圆心角为90°的扇形OAB中,半径OA=4,C为的中点,D、E分别为OA,OB的中点,则图中阴影部分的面积为2π+2﹣2.【考点】扇形面积的计算.【分析】连接OC、EC,由△OCD≌△OCE、OC⊥DE可得DE==2,分别求出S扇形OBC、S△OCD、S△ODE面积,根据S扇形OBC+S△OCD﹣S△ODE=S阴影部分可得.【解答】解:连结OC,过C点作CF⊥OA于F,∵半径OA=4,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=2,OC=4,∠AOC=45°,∴CF=2,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×2×2=2π﹣2,三角形ODE的面积=OD×OE=2,∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(2π﹣2)﹣2=2π+2﹣2.故答案为:2π+2﹣2.【点评】考查了扇形面积的计算,本题难点是得到空白图形ACD的面积,关键是理解图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积.15.如图,在矩形ABCD中,BC=6,CD=8,点P是AB上(不含端点A,B)任意一点,把△PBC沿PC折叠,当点B的对应点B′落在矩形ABCD对角线上时,BP=3或.【考点】矩形的性质;翻折变换(折叠问题).【分析】分两种情况探讨:①点B落在矩形对角线BD上,②点B落在矩形对角线AC上,由三角形相似得出比例式,即可得出结果.【解答】解:①点A落在矩形对角线BD上,如图1,∵矩形ABCD中,AB=4,BC=3∴∠ABC=90°,AC=BD,∴AC=BD==10,根据折叠的性质得:PC⊥BB′,∴∠PBD=∠BCP,∴△BCP∽△ABD,∴,即,解得:BP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质得:BP=B′P,∠B=∠PB′C=90°,∴∠AB′A=90°,∴△APB′∽△ACB,∴,即,解得:BP=3.故答案为:3或.【点评】本题考查了折叠问题、勾股定理,矩形的性质以及三角形相似的判定与性质;熟练掌握矩形的性质,由三角形相似得出比例式是解决问题的关键.三、解答题(本题8个小题,共75分)16.先化简,再求值:(a+)÷(a﹣2+),请从﹣1,0,1中选取一个作为a的值代入求值.【考点】分式的化简求值.【分析】首先对括号内的分式通分相加,然后转化为乘法计算,即可化简,然后选取一个能使分式有意义的x的值代入求解.【解答】解:原式=÷=o=,∵当a取﹣1和1时,原式无意义.∴把a=0代入.原式=﹣1.【点评】本题考查了分式的化简求值,正确对分式进行通分、约分是关键.17.如图,AB是半圆O的直径,点C是半圆O上一点,∠COB=60°,点D是OC的中点,连接BD,BD的延长线交半圆O于点E,连接OE,EC,BC.(1)求证:△BDO≌△EDC.(2)若OB=6,则四边形OBCE的面积为18.【考点】全等三角形的判定与性质;圆周角定理.【分析】(1)证明方法比较多,根据全等三角形判定方法判定即可.(2)先证明四边形OBCE是菱形,求出对角线的长即可求面积.【解答】(1)证明:∵∠COB=60°且OB=OC,∴△BOC为等边三角形,∠OBC=60°,又∵点D是OC的中点,∴OD=CD,∠OBD==30°,又∵点C是半圆上一点且∠COB=60°,∴∠CEB==30°,∴∠OBD=∠CEB,在△BDO与△EDC中,,∴△BDO≌△EDC(AAS);(2)∵∴△BDO≌△EDC,∴EC=OB,∵△OBC是等边三角形,∴OB=BC=EC=EO,∴四边形OBCE是菱形,∴S菱形OBCE=oOCoEB=o6o3=9.【点评】本题考查全等三角形的判定和性质、菱形的判定和性质、菱形的面积,解题的关键是熟练掌握全等三角形的判定,记住菱形的面积等于对角线乘积的一半,属于中考常考题型.18.2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地举行有关纪念活动,为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A,B,C,D四类,其中A类表示"非常了解",B类表示"比较了解",C类表示"基本了解";D类表示"不太了解",调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了200名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为36°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史"非常了解"和"比较了解"的学生共有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由图①知A类人数30,由图②知A类人数占15%,即可求出样本容量;(2)由(1)可知抽查的人数,根据图②知C类人数占30%,求出C类人数,即可将条形统计图补充完整;(3)求出D类的百分数,即可求出圆心角的度数;(4)求出B类所占的百分数,可知A、B类共占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)30÷15%=200,故答案为:200;(2)200×30%=60,条形统计图补充如下:(3)20÷200=0.1=10%,360°×10%=36°,故答案为:36;(4)B类所占的百分数为:90÷200=45%,该校初中学生中对二战历史"非常了解"和"比较了解"的学生共占15%+45%=60%;故这所学校共有初中学生1500名,该校初中学生中对二战历史"非常了解"和"比较了解"的学生共有:1500×60%=900(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.已知关于x的方程kx2﹣x﹣=0(k≠0).(1)求证:方程总有两个不相等的实数根;(2)若方程的两个根都为整数,求整数k的值,并求出方程的根.【考点】根的判别式.【分析】(1)先判断方程为关于x的一元二次方程,再计算出△=9,于是根据判别式的意义可判断方程总有两个不相等的实数根;(2)利用求根公式解方程得到x1=,x2=﹣,然后利用整数的整除性确定k的值.【解答】解:(1)由题知:△=(﹣1)2﹣4×k×(﹣)=1+8=9>0.∴方程总有两个不相等的实数根.(2)解:由求根公式得:x=,∴x1=,x2=,又∵方程的两个根都为整数,且k也为整数,∴k的值为1或﹣1,当k=1时,两根为x1=2,x2=﹣1;当k=﹣1时,两根为x1=﹣2,x2=1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.20.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向25海里的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时40海里的速度航行半小时到达C处,再向南偏东53°方向航行,同时捕鱼船向正北方向低速航行.若两船航速不变,并且在D处会合,求CD两点的距离和捕鱼船的速度(结果保留整数).(参考数据:≈1.7,sin53°≈,cos53°≈,tan53°≈)【考点】解直角三角形的应用-方向角问题.【分析】首先过点C作CG⊥AB于点G,过点D作DF⊥CG于点F,在Rt△CBG中,由题意知∠CBG=30°,可求得CG与BG的长,易得四边形ADFG是矩形,然后在Rt△CDF中,∠CFD=90°,∠DCF=53°,可求得CD的长,继而求得AD的长,则可求得答案.【解答】解:如图,过点C作CG⊥AB于点G,过点D作DF⊥CG于点F,在Rt△CBG中,由题意知∠CBG=30°,∴CG=BC=×40×=10(海里),BG=BCocos30°=20×=10≈17(海里),∵∠DAG=90°,∴四边形ADFG是矩形,∴DF=AG=AB﹣BG=25﹣17=8(海里),在Rt△CDF中,∠CFD=90°,∵∠DCF=53°,∴CD=≈10(海里).CF=≈6(海里),∴AD=FG=CG﹣CF=10﹣6=4(海里),∵渔政船航行时间为:+=(小时),∴捕鱼船的速度为:4÷≈5(海里/时).答:CD两点的距离约为10海里,捕鱼船的速度约为5海里/时.【点评】此题考查了方向角问题.注意准确构造直角三角形是解此题的关键.21.某超市计划购进甲、乙两种品牌的新型节能台灯20盏,这两种台灯的进价和售价如下表所示: 甲 乙进价(元/件) 40 60售价(元/件) 60 100设购进甲种台灯x盏,且所购进的两种台灯都能全部卖出.(1)若该超市购进这批台灯共用去1000元,问这两种台灯购进多少盏?(2)若购进两种台灯的总费用不超过1100元,那么超市如何进货才能获得最大利润?最大利润是多少?(3)最终超市按照(2)中的方案进货,但实际销售中,由于乙品牌的台灯销售前景不容乐观,超市计划对乙品牌台灯进行降价销售,当毎盏台灯最多降价10元时,全部销售后才能使利润不低于550元.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设购进乙种台灯y盏,根据甲、乙共购进20盏和总价=单价×数量列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设获得的总利润为w元,根据总利润=单台利润×数量可列出w关于x的函数解析式,再根据总价=单价×数量列出关于x的一元一次不等式,解不等式即可得出x的取值范围,由w关于x函数的单调性即可解决最值问题;(3)设每盏台灯降价m元,根据实际利润=最大利润﹣降低价格×数量即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设购进乙种台灯y盏,由题意得:,解得:.即甲、乙两种台灯均购进10盏.(2)设获得的总利润为w元,根据题意,得:w=(60﹣40)x+(100﹣60)(20﹣x)=﹣20x+800.又∵购进两种台灯的总费用不超过1100元,∴40x+60(20﹣x)≤1100,解得x≥5.∵在函数w=﹣20x+800中,w随x的增大而减小,∴当x=5时,w取最大值,最大值为700.故当甲种台灯购进5盏,乙种台灯购进15盏时,超市获得的利润最大,最大利润为700元.(3)设每盏台灯降价m元,根据已知,得:700﹣15m≥550,解得:m≤10.故答案为:10.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及一元一次不等式的应用,解题的关键:(1)根据数量关系列出关于x、y的二元一次方程组;(2)根据w关于x的函数的性质解决最值问题;(3)根据数量关系列出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式和函数关系式)是关键.22.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=1;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否任然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.【考点】三角形综合题.【分析】(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可;(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出DE,再利用勾股定理,计算出即可.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=AE,在RtDEF中,DE=2,DF=4,∴EF=2,①在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)②在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),即:CE=2或CE=.【点评】此题是三角形综合题,主要考查了三角形相似的性质和判定,勾股定理,判断相似是解本题的关键,求CE是本题的难点.23.如图,抛物线y=ax2+bx+4与x轴交于A(﹣2,0),D两点,与y轴交于点C,对称轴x=3交x轴交于点B.(1)求抛物线的解析式.(2)点M是x轴上方抛物线上一动点,过点M作MN⊥x轴于点N,交直线BC于点E.设点M的横坐标为m,用含m的代数式表示线段ME的长,并求出线段ME长的最大值.(3)若点P在y轴的正半轴上,连接PA,过点P作PA垂线,交抛物线的对称轴于点Q.是否存在点P,使以点P、A、Q为顶点的三角形与△BAQ全等?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线的解析式即可;(2)确定出ME与m的函数解析式,根据二次函数确定极值的方法确定即可;(3)先判定出△APQ和△ABQ都是直角三角形,因此分两种情况讨论即可.【解答】解:(1)由题意得,点D的坐标为(8,0),把点A、D的坐标代入y=ax2+bx+4,解.故抛物线解析式为y=﹣x2+x+4.(2)由题意,点C,点B坐标分别为(0,4),(3,0),则直线CB解析式y=﹣x+4,点M坐标为(m,﹣m2+m+4),点E坐标为(m,﹣m+4),①当﹣2<m≤0时,ME=﹣m+4﹣(﹣m2+m+4)=m2﹣m,m=﹣2时,ME=,由二次函数性质可知,ME<;②当0<m<8时,ME=﹣m2+m+4﹣(﹣m+4)=m2﹣m=﹣(m﹣)2+当m=时,ME取得最大值,最大值为.综上所述,当﹣2<m≤0时,ME=m2﹣m,当0<m<8时,ME=﹣m2+m.当m=时,ME取得最大值,最大值为.(3)存在,∵PA⊥PQ,BQ⊥x轴∴∠APQ=∠ABQ=90°,∴△APQ和△ABQ中.点P和点B是对应点,∵以点P、A、Q为顶点的三角形与△BAQ全等,只有两种情况:设点P(0,c),Q(3,n)(c>0,∴AB=5,BQ=n,PA=,PQ=,①△PAQ≌△BAQ,∴PA=BA,PQ=BQ,∴=5,=n,∴c=或c=﹣(舍),∴P(0,),②△PQA≌△BAQ,∴PA=BQ,PQ=AB,∴=n,=5,∴c1=,d1=﹣或c2=﹣,d2=(舍)故点P坐标为P1(0,),P2(0,).【点评】此题是二次函数综合题,主要考查了待定系数法确定解析式,两点间的距离公式,全等三角形的性质,解本题的关键是确定函数关系式.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。