资源资源简介:
2016年中考数学热点复习模拟试题24:圆的有关计算(含中考真题解析)专题24圆的有关计算?解读考点知识点 名师点晴弧长和扇形面积 弧长公式 会求n°的圆心角所对的弧长 扇形面积公式 会求圆心角为n°的扇形面积 圆锥侧面积计算公式 能根据公式中的已知量求圆锥中的未知量?2年中考【2015年题组】1.(2015河池)如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.240πcm2B.480πcm2C.1200πcm2D.2400πcm2【答案】A.【解析】试题分析:这张扇形纸板的面积=×2π×10×24=240π(cm2).故选A.考点:圆锥的计算.2.(2015凉山州)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cmB.2cmC.3cmD.4cm【答案】A.考点:圆锥的计算.3.(2015德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°【答案】A.【解析】试题分析:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则,解得:n=288,故选A.考点:圆锥的计算.4.(2015宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cmB.10cmC.20cmD.5πcm【答案】B.考点:圆锥的计算.5.(2015苏州)如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.B.C.D.【答案】A.【解析】试题分析:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=,∴图中阴影部分的面积为:=.故选A.考点:1.扇形面积的计算;2.切线的性质.6.(2015成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和BC弧线的长分别为()A.2,B.,?C.,D.,【答案】D.考点:1.正多边形和圆;2.弧长的计算.7.(2015甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A.π﹣2B.π﹣4C.4π﹣2D.4π﹣4【答案】A.【解析】试题分析:S阴影部分=S扇形OAB﹣S△OAB==π﹣2.故选A.考点:扇形面积的计算.8.(2015攀枝花)如图,已知⊙O的一条直径AB与弦CD相交于点E,且AC=2,AE=,CE=1,则图中阴影部分的面积为()A.B.C.D.【答案】D.考点:1.扇形面积的计算;2.勾股定理的逆定理;3.圆周角定理;4.解直角三角形.9.(2015自贡)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分的面积为()A.2πB.πC.D.【答案】D.【解析】试题分析:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故选D.考点:1.扇形面积的计算;2.垂径定理;3.圆周角定理;4.解直角三角形.10.(2015达州)如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π【答案】B.考点:1.扇形面积的计算;2.旋转的性质.11.(2015德阳)如图,已知⊙O的周长为4π,的长为π,则图中阴影部分的面积为()A.B.C.D.2【答案】A.考点:1.扇形面积的计算;2.弧长的计算.12.(2015梧州)如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心,ED为半径作半圆,交A、B所在的直线于M、N两点,分别以直径MD、ND为直径作半圆,则阴影部分面积为()A.B.C.D.【答案】B.【解析】试题分析:根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积﹣大半圆的面积.∵MN的半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AOD中,OD===,∴阴影部分的面积=△DMN的面积=MNoAD==.故选B.考点:1.扇形面积的计算;2.勾股定理;3.综合题.13.(2015咸宁)如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠BDF=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小到大B.由大到小C.不变D.先由小到大,后由大到小【答案】C.考点:1.扇形面积的计算;2.定值问题;3.综合题.14.(2015常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB与扇形A1O1B1是相似扇形,且半径OA:O1A1=k(k为不等于0的常数).那么下面四个结论:①∠AOB=∠A1O1B1;②△AOB∽△A1O1B1;③;④扇形AOB与扇形A1O1B1的面积之比为.成立的个数为()A.1个B.2个C.3个D.4个【答案】D.考点:1.相似三角形的判定与性质;2.弧长的计算;3.扇形面积的计算;4.新定义;5.压轴题.15.(2015邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π【答案】D.【解析】试题分析:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:++2π=6π,2015÷4=503余3,顶点A转动四次经过的路线长为:6π×504=3024π.故选D.考点:1.旋转的性质;2.弧长的计算;3.规律型.16.(2015北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.【答案】2.考点:圆锥的计算.17.(2015贵港)如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.【答案】15π.【解析】试题分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为:15π.考点:圆锥的计算.18.(2015庆阳)如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为(结果保留π).【答案】.【解析】试题分析:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2××4π×=.故答案为:.考点:1.圆锥的计算;2.点、线、面、体.19.(2015贺州)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D′,则点B经过的路径与BA,AC′,C′B′所围成封闭图形的面积是(结果保留π).【答案】.考点:1.扇形面积的计算;2.旋转的性质.20.(2015天水)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.【答案】4π.考点:1.弧长的计算;2.等边三角形的性质;3.综合题.21.(2015河南省)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.【答案】.【解析】试题分析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==,S扇形ABO==,S扇形CDO==,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)==.故答案为:.考点:扇形面积的计算.22.(2015烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是.【答案】.考点:圆锥的计算.23.(2015乐山)如图,已知A(,2)、B(,1),将△AOB绕着点O逆时针旋转,使点A旋转到点A′(﹣2,)的位置,则图中阴影部分的面积为.【答案】.【解析】试题分析:∵A(,2)、B(,1),∴OA=4,OB=,∵由A(,2)使点A旋转到点A′(﹣2,),∴∠A′OA=∠B′OB=90°,根据旋转的性质可得,,∴阴影部分的面积等于S扇形A'OA﹣S扇形C'OC==,故答案为:.考点:1.扇形面积的计算;2.坐标与图形变化-旋转.24.(2015镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【答案】(1)作图见试题解析;(2).试题解析:(1)如图所示,八边形ABCDEFGH即为所求;(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=×3=135°,∵OA=5,∴的长==,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.考点:1.正多边形和圆;2.圆锥的计算;3.作图-复杂作图.25.(2015宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.26.(2015玉林防城港)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.【答案】(1)证明见试题解析;(2)6.考点:1.切线的性质;2.平行四边形的判定;3.扇形面积的计算;4.综合题.27.(2015扬州)如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.(1)求证:∠PCA=∠B;(2)已知∠P=40°,点Q在优弧ABC上,从点A开始逆时针运动到点C停止(点Q与点C不重合),当△ABQ与△ABC的面积相等时,求动点Q所经过的弧长.【答案】(1)证明见试题解析;(2)或或.【解析】试题分析:(1)连接OC,由PC是⊙O的切线,得到∠1+∠PCA=90°,由AB是⊙O的直径,得到∠2+∠B=90°,从而得到结论;(2)△ABQ与△ABC的面积相等时,有三种情况,即:①当∠AOQ=∠AOC=50°时;②当∠BOQ=∠AOC=50°时;③当∠BOQ=50°时,即∠AOQ=230°时;分别求得点Q所经过的弧长即可.试题解析:(1)连接OC,∵PC是⊙O的切线,∴∠PCO=90°,∴∠1+∠PCA=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠B=90°,∵OC=OA,∴∠1=∠2,∴∠PCA=∠B;考点:1.切线的性质;2.弧长的计算;3.分类讨论;4.综合题;5.轨迹.【2014年题组】1.(2014·扬州)如图,已知正方形边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()A.B.C.D.【答案】B.【解析】试题分析:∵正方形的边长为1,圆与正方形的四条边都相切,∴.∵0.215最接近0.2,∴阴影部分的面积与下列各数最接近的是0.2故选B.考点:1.圆和正方形的面积;2.无理数的大小估计;3.转换思想的应用.2.(2014·金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是()A.B.C.D.【答案】A.故选A.考点:1.等腰直角三角形的判定和性质;2.勾股定理;3.扇形面积和圆面积的计算.3.(2014·辽宁省本溪市)底面半径为4,高为3的圆锥的侧面积是() A. 12π B. 15π C. 20π D. 36π【答案】B.【解析】试题分析:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故选B.考点:圆锥的计算.4.(2014·山东省莱芜市)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是() A. R B.R C.R D. R【答案】D.【解析】试题分析:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R.由勾股定理得到圆锥的高为.故选D.考点:圆锥的计算.5.(2014·贵州安顺市)已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是() A. 30° B. 60° C. 90° D. 180°【答案】D.考点:圆锥的计算.6.(湖南衡阳市)圆心角为,弧长为的扇形半径为()A.B.C.D.【答案】C.【解析】试卷分析:,解得:r=18.故选C.考点:圆的计算.7.(2014南京)如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r=2cm,扇形圆心角,则该圆锥母线长l为cm.【答案】6.【解析】试题分析:∵圆锥底面圆半径r=2cm,∴根据圆的周长公式,得圆的周长为,∵侧面展开后所得扇形弧长等于圆的周长,∴扇形弧长.又∵侧面展开后所得扇形的圆心角为120°,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为.考点:圆锥和扇形的计算.8.(2014·呼和浩特)一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.【答案】1600.考点:圆锥的计算.9.(2014·潍坊)如图,两个半径均为的⊙O1与⊙O2相交于A、B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为.(结果保留π)【答案】.【解析】试题分析:如图,连接O1O2,过点O1作O1H⊥AO2于点H,由题意可得:AO1=O1O2=AO2=,∴△AO1O2是等边三角形.∴.∴.∴.∴图中阴影部分的面积为:.考点:1.扇形面积的计算;2.等边三角形的判定和性质;3.相交两圆的性质;4.锐角三角函数定义;5.特殊角的三角函数值;6.转换思想的应用.10.(2014·重庆A)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为.(结果保留π)【答案】.考点:1.切线的性质;2.等腰三角形的性质;3.含30度角的直角三角形的性质;4.勾股定理;5.扇形面积的计算;6.转换思想的应用.?考点归纳归纳1:弧长公式基础知识归纳:n°的圆心角所对的弧长l的计算公式为注意问题归纳:①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长.③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.【例1】在半径为2的圆中,弦AB的长为2,则的长等于() A. B. C. D.【答案】C.考点:弧长的计算.归纳2:扇形面积基础知识归纳:扇形面积公式:注意问题归纳:其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.【例2】如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形,则S扇形=cm?【答案】4.【解析】试题分析:设围成扇形的角度为n,∵将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形,∴围成扇形的弧长为4cm.∴根据弧长公式,得,∴根据扇形面积公式,得.考点:扇形的计算.归纳3:圆锥的侧面积基础知识归纳:圆锥的侧面积:,其中l是圆锥的母线长,r是圆锥的地面半径.注意问题归纳:①圆锥的母线与展开后所得扇形的半径相等.②圆锥的底面周长与展开后所得扇形的弧长相等.【例3】一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A. 12πcm2 B.15πcm2 C.20πcm2 D.30πcm2【答案】B.考点:圆锥的计算.归纳4:阴影部分面积基本方法归纳:求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.注意问题归纳:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.【例4】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.【答案】.考点:扇形面积的计算.?1年模拟1.(2015届湖北省宜昌市兴山县校级模拟)劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm,母线长50cm,则这顶纸帽的侧面积为()cm2.A.250πB.500πC.750πD.1000π【答案】B.【解析】试题分析:底面圆的半径为10cm,则底面周长=20πcm,侧面面积=π×10×50=500πcm2.故选B.考点:圆锥的计算.2.(2015届湖北省广水市校级模拟)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π【答案】C.【解析】试题分析:底面圆的半径为2,则底面周长=4π,因为底面半径为2cm、高为2cm,所以圆锥的母线长为4cm,即可求得侧面面积=×4π×4=8π;底面积为=4π,所以全面积为:8π+4π=12πcm2.故选C.考点:圆锥的有关计算.3.(2015届山东省高密市模拟考试)如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积是()A.B.C.D.【答案】B.考点:1.圆锥的侧面展开图;2.扇形的面积计算.4.(2015届山东省新泰市模拟考试)如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A.B.C.D.【答案】C.【解析】试题分析:连接BH,BH1,∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面积公式可得.故选C.考点:扇形面积的计算.5.(2015届江苏省兴化顾庄等三校校级模拟)若粮仓顶部是圆锥形,且这个圆锥的高为2m,母线长为2.5m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是m2.【答案】.考点:圆锥的计算.6.(2015届河南省三门峡市模拟考试)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,分别以A、C为圆心,以的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为.【答案】24-cm2.【解析】试题分析:如图:∵Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC==10cm,△ABC的面积是:ABoBC=×8×6=24cm2.∴S阴影部分=×6×8-=24-cm2,故阴影部分的面积是:24-cm2.考点:扇形面积的计算.7.(2015届湖北省武汉市校级模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-2,3)、B(-1,2)、C(-3,1),△ABC绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)求点A经过的路径弧AA1的长度;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并直接写出D点坐标.【答案】(1)图形详见解析;(2);(3)(0,).试题解析:解:(1)如图如下:考点:作图-旋转变换;待定系数法求解析式;弧长公式.8.(2015届广东省中山市校级模拟)如图,AB是的直径,点D在上,∠DAB=45°,BC∥AD,CD∥AB.(1)、判断直线CD与的位置关系,并说明理由;(2)、若的半径为1,求图中阴影部分的面积(结果保留π).【答案】(1)、相切;(2)、.【解析】试题分析:(1)、连接OD,根据OA=OD,∠ODA=45°得出∠AOD=90°,根据CD∥AB得出∠ODC=90°,从而说明切线;(2)、首先求出梯形OBCD的面积,然后利用梯形的面积减去扇形OBD的面积求出阴影部分的面积.考点:切线的判定、扇形的面积计算.9.(2015届山东省博兴县校级模拟)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【答案】(1)见解析;(2)BD=6;(3)6π.【解析】试题分析:(1)连接OC交BD于点E,根据∠CDB=∠OBD=30°得出∠COB=60°,∠OEB=90°,根据AC∥BD得到∠OCA=90°;(2)根据OB=6,OE⊥BD,∠OEB=30°,求出OE和BE的长度,然后计算出BD的长度;(3)根据△OBE和△CDE全等,将阴影部分的面积转化成扇形OBC的面积,然后根据扇形的面积计算公式进行求解.试题解析:(1)证明:连接OC,交BD于点E.∵∠CDB=∠OBD=30°∴∠COB=60°,∠OEB=90°∵AC∥BD∴∠OCA=∠OEB=90°∴OC⊥AC∴AC是⊙O的切线.(2)∵∠OEB=90°,∠OBD=30°∴OC⊥BD,∴BE=DE=∴(3)∵OE=CE,∠OEB=∠CED=90°,BE=DE,∴△OEB≌△CED∴考点:切线的判定、垂径定理、扇形的面积计算.10.(2015届山东省高密市模拟考试)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线.(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.【答案】(1)见解析(2).考点:1.切线的证明;2.勾股定理;3.特殊角的三角函数值;4.扇形的面积计算.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。