资源资源简介:
2016年中考数学热点复习模拟试题23:圆的有关位置关系(含中考真题)专题23圆的有关位置关系?解读考点知识点 名师点晴点和圆的位置关系 理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r及其运用.直线和圆的位置关系 切线的判定定理 理解切线的判定定理,会运用它解决一些具体的题目 切线的性质定理 理解切线的性质定理,会运用它解决一些具体的题目 切线长定理 运用切线长定理解决一些实际问题.圆和圆的位置关系 理解两圆的互解关系与d、r1、r2等量关系的等价条件并灵活应用它们解题.?2年中考【2015年题组】1.(2015贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.3【答案】B.考点:1.点与圆的位置关系;2.三角形中位线定理;3.最值问题;4.轨迹.2.(2015湘西州)⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定【答案】B.【解析】试题分析:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选B.考点:点与圆的位置关系.3.(2015泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【答案】C.【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.4.(2015宜昌)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cmB.四边形AOBC为正方形C.弧AB的长度为4πcmD.扇形OAB的面积是4πcm2【答案】C.考点:1.切线的性质;2.正方形的判定与性质;3.弧长的计算;4.扇形面积的计算;5.应用题;6.综合题.5.(2015襄阳)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【答案】C.【解析】试题分析:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选C.考点:1.三角形的外接圆与外心;2.圆周角定理;3.分类讨论.6.(2015齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5【答案】A.考点:1.直线与圆的位置关系;2.勾股定理;3.垂径定理.7.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为"整圆".如图,直线l:与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.12【答案】A.【解析】试题分析:∵直线l:与x轴、y轴分别交于A、B,∴B(0,),∴OB=,在RT△AOB中,∠OAB=30°,∴OA=OB==12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,设P(x,0),∴PA=12﹣x,∴⊙P的半径PM=PA=,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,共6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.新定义;4.动点型;5.综合题.8.(2015贺州)如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论:①AD=DC;②AB=BD;③AB=BC;④BD=CD,其中正确的个数为()A.4个B.3个C.2个D.1个【答案】B.故选B.考点:切线的性质.9.(2015南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.【答案】A.考点:1.切线的性质;2.矩形的性质;3.综合题.10.(2015天水)相切两圆的半径分别是5和3,则该两圆的圆心距是.【答案】2或8.【解析】试题分析:若两圆内切,圆心距为5﹣3=2;若两圆外切,圆心距为5+3=8,故答案为:2或8.考点:1.圆与圆的位置关系;2.分类讨论.11.(2015上海市)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于.(只需写出一个符合要求的数)【答案】14(答案不唯一).考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.开放型.12.(2015盐城)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.【答案】3<r<5.【解析】试题分析:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.考点:点与圆的位置关系.13.(2015上海市)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于.(只需写出一个符合要求的数)【答案】14(答案不唯一).【解析】试题分析:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).考点:1.圆与圆的位置关系;2.点与圆的位置关系;3.开放型.14.(2015义乌)在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为.【答案】3或.考点:1.点与圆的位置关系;2.勾股定理;3.垂径定理;4.分类讨论.15.(2015徐州)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=°.【答案】125.【解析】试题分析:连接OD,则∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.考点:切线的性质.16.(2015镇江)如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=,则∠ACD=°.【答案】112.5.考点:切线的性质.17.(2015贵阳)小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.【答案】.考点:1.切线的性质;2.轨迹;3.应用题;4.综合题.18.(2015泰安)如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.【答案】50°.【解析】试题分析:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.考点:切线的性质.19.(2015鄂州)已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB是⊙O的弦,AB=,连接PB,则PB=.【答案】1或.考点:1.切线的性质;2.分类讨论;3.综合题.20.(2015广元)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确结论是________(只需填写序号).【答案】②③.则正确的选项序号有②③.故答案为:②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质;5.压轴题.21.(2015荆州)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数()的图象经过圆心P,则k=.【答案】﹣5.考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.反比例函数图象上点的坐标特征;4.综合题;5.压轴题.22.(2015杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′oOP=,则称点P′是点P关于⊙O的"反演点".如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.【答案】.【解析】考点:1.点与圆的位置关系;2.勾股定理;3.新定义.23.(2015北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.【答案】(1)证明见试题解析;(2)证明见试题解析;(3).【解析】试题分析:(1)如图,连接OE,证明OE⊥PE即可得出PE是⊙O的切线;(2)由圆周角定理得到∠AEB=∠CED=90°,进而得到∠3=∠4,结合已知条件证得结论;(3)设EF=x,则CF=2x,在RT△OEF中,根据勾股定理求出EF的长,进而求得BE,CF的长,在RT△AEB中,根据勾股定理求出AE的长,然后根据△AEB∽△EFP,求出PF的长,即可求得PD的长.考点:1.切线的判定;2.相似三角形的判定与性质;3.圆的综合题;4.压轴题.24.(2015南宁)如图,AB是⊙O的直径,C,G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.【答案】(1)证明见试题解析;(2)30°;(3).【解析】试题解析:(1)如图1,连接OC,AC,CG,∵AC=CG,∴,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;(2)∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴,∴,∵OA=OB,∴AE=OA=OB,∴OC=OE,∵∠ECO=90°,∴∠E=30°;(3)如图2,过A作AH⊥DE于H,∵∠E=30°,∴∠EBD=60°,∴∠CBD=∠EBD=30°,∵CD=,∴BD=3,DE=,BE=6,∴AE=BE=2,∴AH=1,∴EH=,∴DH=,在Rt△DAH中,AD===.考点:1.圆的综合题;2.切线的判定与性质;3.相似三角形的判定与性质;4.压轴题.25.(2015桂林)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.【答案】(1);(2);(3)证明见试题解析.(2)如图1,连接EO,OP,∵点E是BC的中点,∴OE⊥BC,∠OCE=45°,则∠E0P=90°,∴EO=EC=2,OP=CO=4,∴PE==;(3)如图2,在AB上截取BF=BM,∵AB=BC,BF=BM,∴AF=MC,∠BFM=∠BMF=45°,∵∠AMN=90°,∴∠AMF+∠NMC=45°,∠FAM+∠AMF=45°,∴∠FAM=∠NMC,∵由(1)得:PD=PC,∠DPC=90°,∴∠DCP=45°,∴∠MCN=135°,∵∠AFM=180°﹣∠BFM=135°,在△AFM和△CMN中,∵∠FAM=∠CMN,AF=MC,∠AFM=∠MCN,∴△AFM≌△CMN(ASA),∴AM=MN.考点:1.圆的综合题;2.切线的性质;3.正方形的判定与性质;4.全等三角形的判定与性质;5.压轴题.26.(2015柳州)如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.【答案】(1),M(,);(2),(,);(3)证明见试题解析.试题解析:(1)∵=,∴抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2)∵,∴当y=0时,,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==.设直线BC的解析式为考点:1.二次函数综合题;2.最值问题;3.切线的判定;4.压轴题.【2014年题组】1.(2014·扬州)如图,圆与圆的位置关系没有()A.相交B.相切C.内含D.外离[【答案】A.考点:圆与圆的位置关系.2.(2014·山东省淄博市)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为() A. 4 B. 2 C. 5 D. 6【答案】B.【解析】试题分析:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH=,∴AH=OA+OH=+=4,∴AC=.∵∠CDE=∠ADF,∴,∴,∴EF=AC=.故选B.考点:切线的性质.3.(2014·四川省广安市)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现() A. 3次 B.4次 C.5次 D.6次【答案】B.考点:直线与圆的位置关系.4.(2014·泸州)如图,⊙,⊙的圆心,都在直线上,且半径分别为2cm,3cm,.若⊙以1cm/s的速度沿直线向右匀速运动(⊙保持静止),则在7s时刻⊙与⊙的位置关系是()A.外切B.相交C.内含D.内切【答案】D.【解析】试题分析:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm.根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).因此,∵⊙O1和⊙O2的半径分别为2㎝和3㎝,且O1O2=12㎝,∴3-2=1,即两圆圆心距离等于两圆半径之差.∴⊙O1和⊙O2的位置关系是内切.故选D.考点:1.面动平移问题;2.两圆的位置关系.5.(2014·黔西南)已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为()A.外离B.内含C.相交D.外切【答案】D.考点:圆与圆的位置关系.6.(2014·桂林)两圆的半径分别为2和3,圆心距为7,则这两圆的位置关系为()A.外离B.外切C.相交D.内切【答案】A.【解析】试题分析:根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).因此,∵两圆的半径分别为2和3,圆心距为7,∴,即两圆圆心距离大于两圆半径之和.∴这两圆的位置关系为外离.故选A.考点:两圆的位置关系.7.(2014·北海)若两圆的半径分别是1cm和4cm,圆心距为5cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离【答案】C.考点:两圆的位置关系.8.(2014·甘肃省白银市)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是() A. 相交 B. 相切 C. 相离 D. 无法判断【答案】A.【解析】试题分析:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选A.考点:直线与圆的位置关系.9.(2014·资阳)已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是.【答案】相离.【解析】试题分析:∵两圆的半径分别是方程x2﹣5x+5=0的两个根,∴两半径之和为5,∵⊙O1与⊙O2的圆心距为6,∴6>5,∴⊙O1与⊙O2的位置关系是相离.故答案为:相离.考点:1.根与系数的关系;2.圆与圆的位置关系.10.(2014·宜宾)如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=.【答案】.考点:切线的性质.11.(2014·福建省莆田市)如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且(1)求证:CD是⊙O的切线;(2)若tan∠CAB=,BC=3,求DE的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)连结OC,由,根据圆周角定理得∠1=∠2,而∠1=∠OCA,则∠2=∠OCA,则可判断OC∥AD,由于AD⊥CD,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BE交OC于F,由AB是⊙O的直径得∠ACB=90°,在Rt△ACB中,根据正切的定义得AC=4,考点:切线的判定.?考点归纳归纳1:点和圆的位置关系基础知识归纳:设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r点P在⊙O内;d=r点P在⊙O上;d>r点P在⊙O外.基本方法归纳:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.注意问题归纳:符号"?"读作"等价于",它表示从符号"?"的左端可以得到右端,从右端也可以得到左端.【例1】在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【答案】A.考点:点与圆的位置关系.归纳2:直线与圆的位置关系基础知识归纳:直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离.如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交d<r;直线l与⊙O相切d=r;直线l与⊙O相离d>r;注意问题归纳:直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系.【例2】已知⊙O的半径r=3,设圆心O到一条直线的距离为d,圆上到这条直线的距离为2的点的个数为m,给出下列命题:①若d>5,则m=0;②若d=5,则m=1;③若1<d<5,则m=3;④若d=1,则m=2;⑤若d<1,则m=4.其中正确命题的个数是()A.1B.2C.4D.5【答案】C.考点:直线与圆的位置关系.归纳3:圆和圆的位置关系基础知识归纳:如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种.如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种.如果两个圆有两个公共点,那么就说这两个圆相交.基本方法归纳:设两圆的半径分别为R和r,圆心距为d,那么两圆外离d>R+r两圆外切d=R+r两圆相交R-r<d<R+r(R≥r)两圆内切d=R-r(R>r)两圆内含d<R-r(R>r)【例3】如图,当半径分别是5和r的两圆⊙O1和⊙O2外切时,它们的圆心距O1O2=8,则⊙O2的半径r为() A. 12 B. 8 C. 5 D. 3【答案】D.【解析】试题分析:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8-5=3.故选D.考点:圆与圆的位置关系.?1年模拟1.(2015届广东省湛江第二中学校级模拟)已知⊙O的半径为2,圆心O到直线l的距离PO=1,则直线l与⊙O的位置关系是()A.相切B.相离C.相交D.无法判断【答案】C.考点:直线与圆的位置关系.2.(2015届江苏省盐城校级模拟)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2,下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【答案】A.【解析】试题分析:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选A.考点:点与圆的位置关系.3.(2015届四川省广安市校级模拟)如图所示,△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若∠DEF=52°,则∠A的度数是【答案】76°.考点:1三角形的内切圆与内心;2.圆周角定理;3.切线的性质.4.(2015届湖南省长沙麓山国际等四校联考)中,.则的内切圆半径______.【答案】2.【解析】试题分析:利用面积分割法可得出直角三角形内切圆的半径r与三角形的三边之间的关系为:其中:a,b是直角三角形的两条直角边,c是直角三角形的斜边由勾股定理可求出斜边AB=10所以内切圆半径考点:直角三角形的内切圆和内心.5.(2015届北京市怀柔区一模)已知两圆的半径分别为2cm和4cm,它们的圆心距为6cm,则这两个圆的位置关系是.【答案】外切.【解析】试题分析:圆心距6=两个半径之和,所以这两个圆相外切.考点:圆有关的位置关系.6.(2015届河南省三门峡市一模)两圆的圆心距d=6,两圆的半径长分别是方程的两根,则这两个圆的位置关系是.【答案】内切.考点:1.圆与圆的位置关系;2.解一元二次方程-因式分解法.7.(2015届江西省南昌市一模)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=2n,则图中阴影部分的面积是().A.n2πB.2n2πC.4n2πD.8n2π【答案】A.【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×2n=n∵圆环(阴影)的面积=πoOB2-πoOC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=πoOB2-πoOC2=π(OB2-OC2)=πoBC2=n2π.故选A.考点:1.垂径定理的应用;2.切线的性质.8.(2015届四川中江县校级模拟)如图所示,图①中圆与正方形各边都相切,设这个圆的周长为;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长为;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长为;….依此规律,当正方形边长为2时,=____________.【答案】10100π.考点:1.相切两圆的性质;2.规律型:图形的变化类.9.(2015届山东省滕州市校级模拟)已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B.若PA=6,则PB=.【答案】6.【解析】试题分析:∵PA、PB都是⊙O的切线,且A、B是切点,∴PA=PB,即PB=6.考点:切线长定理.10.(2015届江苏省如皋市校级模拟)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=度.【答案】40°.考点:1.切线的性质;2.圆周角定理.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。