资源资源简介:
免费2017人教版中考数学《第一讲数与式》复习教案+检测中考数学要点考点试卷分析网第一讲数与式王文涛1.1实数的意义基础盘点1._____和_____统称为有理数,________叫做无理数,有理数和无理数统称为______.2.规定了_____、_____和_____的_____叫做数轴.实数与数轴上的点具有______的关系.3.相反数:a与________互为相反数,若a与b互为相反数,则a+b=________.4.倒数:若ab=1,则a与b互为________.5.数轴上,表示a的点___________,叫做a的绝对值.6.科学记数法就是把一个数写成的形式,其中a的范围是_____,n是整数.考点呈现考点1实数的有关概念例1(2015·绥化)在实数0、π、、、中,无理数的个数有()A.1个B.2个C.3个D.4个解析:在给出的各个数中,和是无限不循环小数,它们是无理数,故应选B.评注:解此类问题,关键是牢记无理数有三种形式:一是开方开不尽的数(如);二是具有特定结构的数(如0.1010010001…);三是含有圆周率和自然常熟e的数(如).例2(2015·毕节)下列说法正确的是()A.一个数的绝对值一定比0大 B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数 D.最小的正整数是1解析:0的绝对值是0,故A和C错误;负数的相反数比它本身大,零的相反数等于它本身,故B错误;最小的正整数是1,故D正确.故选D.评注:本题考查了实数的概念,熟练掌握绝对值、相反数的概念、实数大小的比较方法,是解决此题的关键.考点2近似数与科学记数法例3(2015·黔南州)下列各数表示正确的是()A.57000000=57×106B.0.0158(用四舍五入法精确到0.001)≈0.015C.1.804(用四舍五入法精确到十分位)≈1.8D.0.0000257=2.57解析:根据科学记数法的表示方法,57000000应等于5.7×107,0.0000257=2.57,故A和D均不对;0.0158用四舍五入法精确到0.001等于0.016,B不对,所以应选C.评注:在用科学记数法把一个数写成的形式时,表示一个绝对值大于1的数时,n的值比原数的整数位数小1;表示绝对值小于1的数时,n的值是负整数,是第一个非零数字前所有0的个数的相反数.近似数的精确度,就是这个近似数中最后一个数字所在的那一位.考点3实数与数轴例4(2015·威海)实数在数轴上的位置如图所示,下列结论错误的是()A.<1<B.1<<C.1<<D.<<-1解析:根据实数a,b在数轴上的位置,可得a<﹣1<0<1<b,所以>1,所以A是错误的,应选A.评注:解答此题的关键是要明确数轴及绝对值的意义及实数大小的比较方法.解答此类题型还可以将a,b用相应的数字代替,然后比较各个选项即可.考点4非负数的性质例5(2015·绵阳)若,则()A.B.1C.D.解析:因为非负数和之和等于零,故,所以,则=,故选A.评注:常见的非负数有以下几类:一个数的绝对值、一个数的偶数次方、一个非负数的算术平方根等.非负数有如下性质:它有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.考点5无理数的估算例6(2015·自贡)若两个连续整数,满足<<,则值是___.解:因为4<5<9,所以<<,即2<<3,由此可得3<+1<4,故=3,=4,所以=7.评注:实数的估算,常见题型就是确定无理数a的整数部分和小数部分,其方法是将无理数a限制在两个连续的整数之间,形如n<a<n+1,则其整数部分就是n,小数部分就是a-n.误区点拨1.对无理数的概念理解不清致错例1(2015·通辽)实数tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4B.2C.1D.3错解:A剖析:无理数就是无限不循环小数,常见的有三种类型(见例1评注),本题中,﹣π,sin60°,0.3131131113…是无理数,故应选D.需注意的是=2,,都是有理数.正确答案为D.2.考虑问题不全面致错例2如果,则=____.错解:6.剖析:本题应分两种情况,即或,错解只考虑了前一种情况,而忽视了后一种情况.答案应为6或-4.跟踪训练1.(2015·上海)下列实数中,是有理数的为()A.错误!未找到引用源。B.错误!未找到引用源。C.错误!未找到引用源。D02.(2015·内江)用科学记数表示0.0000061,结果是()A.B.C.D.3.(2015·资阳)如图,已知数轴上的点A,B,C,D分别表示数-2,1,2,3,则表示3-的点P应落在线段()A.AO上 B.OB上C.BC上 D.CD上4.(2015·菏泽)如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点MB.点NC.点PD.点Q5.(2015·资阳)已知:,则的值为____.1.2实数的运算及二次根式基础盘点1.实数的运算⑴在进行实数的加法与乘法运算时,可以先确定结果的符号,再确定结果的绝对值.⑵减去一个数,等于_________;除以一个数,等于________.⑶________叫做乘方,乘方的结果叫做________.⑷,(a≠0,且m为整数).2.二次根式⑴形如______的式子,叫做二次根式.⑵,考点呈现考点1实数的运算例1(2015·毕节)计算:.解析:先根据零指数幂、负整数指数幂的意义,实数的绝对值的性质等知识将原式化简,再进行计算.原式=.评注:进行实数运算,首先要掌握零指数、负整数指数幂的意义及实数的有关性质,其次要确定运算顺序,另外还要根据算式特点,使用运算定律,以达到简化运算之目的.考点2二次根式有意义的条件例2(2015·攀枝花)若,则=______.解析:根据二次根式有意义的条件可知,,且,所以x=3,y=2,解得=9.评注:本题主要考查对二次根式有意义的条件的理解和掌握,根据二次根式有意义的条件,求出x与y的值是解此题的关键.考点3二次根式的计算例3(2015·临沂)计算:.解析:先将所求算式变形为,然后根据平方差公式展开得,再利用完全平方公式展开后合并,即可得出最后结果为(过程略).评注:实数的运算律对二次根式的运算仍适用,并且在进行二次根式的运算时,可以利用乘法公式简化运算步骤.误区点拨1.对平方根和算术平方根概念理解不清致错例1(2015·凉山州)的平方根是____.错解:或3.剖析:由于不理解题意,误将结果求成81的平方根,而得出;不理解平方根的意义,得出3这一错误结果.因为,故本题求的是9的平方根,答案应为.2.由于不理解负整数指数幂和绝对值的意义知错例2(2015·绥化)计算:_________.错解:原式=.剖析:本题两个错误,一是去绝对值符号时,由于没搞清的正负,造成了去绝对值符号时的错误.因为<0,所以其绝对值等于;二是错在由于不理解负整数指数幂的意义,将求错.原式=.跟踪训练1.(2015·绵阳)要使代数式有意义,则的()2.A.最大值是B.最小值是C.最大值是D.最小值是2.(2015·淮安)下列式子为最简二次根式的是()A.B.C.D.3.(2015·潜江)下列各式计算正确的是()A.B.C.D.4.计算:⑴(2015·眉山)=_____;⑵(2015·南京)的结果是_____;⑶(2015·哈尔滨市)=______.5.计算:(2015·北京);1.3整式基础盘点1.单项式和多项式统称为______;所含字母____,并且相同字母也相同的项,叫做______.2.整式的运算:(1)_______;_______;_______;_______(a≠0).(2)_______;=_______.3.乘法公式:⑴=________;⑵=_________.4.因式分解:⑴把一个_____化为几个________的形式,叫多项式的因式分解.⑵因式分解常用的方法有______法和______法.考点呈现考点1整式的有关概念例1(2015·巴中)若单项式与是同类项,则a,b的值分别为()A.a=3,b=1B.a=-3,b=1C.a=3,b=-1D.a=-3,b=-1解析:因为这两个单项式是同类项,所以,解得a=3,b=1,故选A.评注:本题考查了同类项的概念,可利用同类项中"相同字母的指数相同"这一条件,列出方程组求解.考点2幂的运算例2(2015·湖北鄂州)下列运算正确的是()A.B.C.D.解析:选项A用同底数幂的乘法法则计算,结果为;选项B为幂的乘方,应将指数相乘,结果为;选项C为积的乘方,应将积中每个因式分别乘方,结果为;选项D用同底数幂的除法计算,结果正确.故选D.评注:幂的运算法则是进行整式乘除的基础,在运用幂的运算法则进行计算时,不要将它们弄混,要熟记各个法则的特点,根据题目灵活选择合适的使用.考点3乘法公式例3(2015·河池)先化简,再求值:(3-x)(3+x)+(x+1)2,其中x=2.解析:分别利用平方差公式和完全平方公式,按去括号、合并同类项的步骤化简,再代入求值.原式==,当时,原式=14.评注:在运用乘法公式时,要先观察算式的特点是否符合公式条件,再确定能否利用公式计算,若实在不能变为符合公式的形式,那就应该用多项式与多项式相乘的法则进行计算.考点4整式的运算例4(2015·湖北随州市)先化简,再求值:(2+A(2-A+a(a-5b)+÷.其中ab=-.解析:先根据乘法公式、整式乘除法的法则去括号,得原式=4-+-5ab+3ab,再合并同类项,得4-2ab,最后代入求值,结果为5(过程略).评注:在进行整式运算时,不要漏项,不要搞错符号,对于计算结果,有同类项的要合并同类项,还有就是应将结果按某一字母降幂排列.考点5因式分解例5分解因式:⑴(2015·本溪)=_______;⑵(2015·泰安)=_______.解析:按先提公因式,再用公式法分解的顺序进行:⑴=;⑵=.评注:在对多项式进行因式分解时需注意两点:一是有公因式的要先提取公因式,二是分解因式一定要彻底,也就是要分解到每一个多项式因式都不能再分解为止.误区点拨1.对乘法公式的结构认识不清致错例2计算:.错解:.剖析:错解错在对乘法公式的结构认识不清,在运用乘法公式时,关键要弄清公式中与所代表的代数式,题中根本不能用平方差公式,应变形后用完全平方公式.答案为.2.分解因式不彻底致错例2分解因式:;错解:.剖析:分解因式时,要先观察多项式中是不是有公因式,若有公因式,应先提公因式,错解就错在没提公因式,直接运用平方差公式,造成了分解不彻底这一错误,正确结果为.跟踪训练1.(2015·陕西)下列计算正确的是()A.a2·a3=a6B.(-2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab2.(2015·邵阳)已知a+b=3,ab=2,则的值为()A.3B.4C.5D.63.⑴(2015·绵阳)=____;⑵(2015·常德)=_____.4.因式分解:⑴(2015·o鄂州)a3b﹣4ab=____;⑵(2015·巴中)2a2﹣4a+2=____.5.化简:⑴(2015·浙江省温州)(2a+1)(2a-1)-4a(a-1).⑵(2015·湖北省咸宁)化简:.6.(2015·江西省)先化简,再求值:,其中,.1.4分式基础盘点1.分式有意义的条件是______,分式值为零的条件是______.2.分式的基本性质:(1)______;(2)______;(3).3.分式的运算:(1)=______,=______,=______;(2)=______,=______.考点呈现考点1分式有意义的条件例1(2015·绥化)若代数式的值等于0,则x=_________.解析:由分式的值为零可知x2﹣5x+6=0且2x﹣6≠0,由x2﹣5x+6=0,得x=2或x=3;由2x﹣6≠0,得x≠3,所以x只能取2.评注:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.考点2分式的基本性质例2(2015·益阳)下列等式成立的是()A.B.C.D.解析:根据分式的性质对四个选项逐一分析可知只有C正确,故应选C.评注:分式的基本性质是分式变形的依据,在利用分式基本性质变形时,分子和分母必须同乘或(除以)同一个不为零的数或式,分式的值才不变.考点三:分式的运算例3(2015·四川省凉山州市)先化简:,然后从的范围内选取一个合适的整数作为的值代入求值.解:原式===,当时,原式=.评注:所代入的数不能为0、1和-1,因为这些数使原式无意义.误区点拨1.忽视分式中分母不为零致错例1(2014凉山州)分式的值为零,则x的值为()A.3B.﹣3C.±3D.任意实数错解:C剖析:错解错在只考虑了分子为零,而忽视了分母不为零这一条件,应选A.2.利用分式的基本性质变形时,忽视同乘或同除的数不能为零致错例2以下两个等式:①;②.其中一定成立的是_____(填序号).错解:①②.剖析:①不一定成立,因为变形时两边同乘以的有可能得零;而②一定成立,因为题目中隐藏着这一条件.故答案为②.跟踪训练1.(2015·金华)要使分式有意义,则x的取值应满足()A.x=-2B.x≠2C.x>-2D.x≠-22.(2015·义乌)化简的结果是()A.x+1B.C.x-1D.3.(2015·无锡)化简得__________.4.(2015·河北)若,则的值为.5.(2015·达州)化简,并求值.其中a与2、3构成△ABC的三边,且a为整数.参考答案1.1实数的意义1.D2.B3.B4.C5.121.2实数的运算与二次根式1.A2.A3.D4.55.1.3整式1.B2.C3.⑴0;⑵4.⑴ab(a+2)(a﹣2);⑵2(a﹣1)25.⑴4a-1;⑵6.原式=,当a=-1,b=时,原式=-11.1.4分式1.D2.A3.4.5.原式化简得。由题意可得1<a<5,a又为整数,所以a=4.当a=4.时,原式=1.数与式综合测试题王文涛(时间:_______满分:120分)(班级:_______姓名:_______得分:_______)一、选择题(每小题3分,共30分)1.有下列各数:-0.101001,,,,,0,,其中无理数有()A.1个B.2个C.3个D.4个2.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11104B.1.1105C.1.1104D.0.111063.一个正方形的边长为a,面积为b,下列说法中正确的是()A.b的平方根是aB.a是b的算术平方根C.D.4.多项式与多项式的公因式是()A.B.C.D.5.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A的左边 B.点A与点B之间C.点B与点C之间 D.点B与点C之间(靠近点C)或点C的右边6.若,则m的值为()A.2B.3C.4D.57.对于有理数数,我们规定表示不大于的最大整数,例如,,,若,则的取值可以是()A.40B.45C.51D.568.若,则等于()A.B.C.D.9.如果>0,<0,那么下面各式:①;②;③.其中正确的是()A.①②B.②③C.①③D.①②③10.如图,设k=(a>b>0),则有()A.k>2B.1<k<2C. D.二、填空题(每小题4分,共32分)11.-2016的相反数是_______.12.将实数2,,0,,,-1.6按从小到大的顺序排列为_____________.13.计算的结果为_______.14.有下列运算:①;②;③;④.其中正确的是_______(填序号).15.若直角三角形的两直角边长为a,b,且满足,则该直角三角形的斜边长为.16.当取整数时,分式的值为正整数(写出所有结果).17.若4个数,,,排列成,我们称之为二阶行列式.规定它的运算法则为:.若,则=________.18.现有两张铁皮,长方形铁皮的长为,宽为.(其中);正方形铁皮的边长为.现根据需要,要把两张铁皮裁剪后焊接成一张长方形的铁皮,铁皮一边长为,则新铁皮的另一边长为______(不计损失).三、解答题(共58分)19.(每小题6分,共12分)按要求答题:⑴化简:;⑵分解因式:.20.(10分)已知,,,…,若(,均为正整数).⑴直接写出,的值,=______,=_____.⑵求分式的值.21.(10分)设,是否存在实数,使得代数式能化简为?若能,请求出所有满足条件的值,若不能,请说明理由.【22.(12分)在下面的一排小方格中,除已知的数外,其余的小方格中的每个字母都代表一个有理数,已知其中任何三个连续方格中的有理数之和为23.Q -12 T A R K 8 ……⑴求Q+T+A+R+K的值;⑵分别求出Q和T的值;⑶在经历了问题⑵的解答后,请你说明小方格中的数的排列规律,并说出小方格第2016个数应是多少?23.(14分)阅读下面的化简过程,并解答后面的问题:;;⑴化简和的结果分别是______和______;⑵已知是正整数,求与的值;⑶求的值.数与式综合测试题参考答案一、1.C2.B3.B4.A5.D6.A7.C8.D9.B10.B二、11.201612.<-1.6<<0<2<13.114.①②③15.516.-4和-217.18.三、19.⑴原式==.⑵原式==.20.⑴=10,=99.⑵原式=,当=10,=99时,原式=.21.存在实数,理由如下:原式==,因为,所以==.当=1时,原式能化简成为.由=1得,或.22.⑴因为Q-12+T+A+R+K=46,所以Q+T+A+R+K=58;⑵根据题意可知,Q-12+T=-12+T+A,所以Q=A.又因为A+R+K=R+K+8,所以A=8,即Q=8.因为Q-12+T=23,所以T=27.⑶小方格中的数的排列规律是8、-12、27、8、-12、27、8、-12、27,…,所以第2016个数应为27.23.⑴和.⑵..⑶原式===9.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。