资源资源简介:
2016年河南省中考数学一模真题试卷含答案解析2016年河南省信阳市中考数学一模试卷一、选择题:1.下列各组数中,互为倒数的是()A.2和﹣2 B.﹣2和 C.﹣2和﹣ D.﹣和22.下列不是三棱柱展开图的是()A. B. C. D.3.据统计,今年春节期间(除夕到初五),微信红包总收发次数达321亿次,几乎覆盖了全国75%的网民,数据"321亿"用科学记数法可表示为()A.3.21×108 B.321×108 C.321×109 D.3.21×10104.如图,把等腰直角三角板的直角顶点放在刻度尺的一边上,若∠1=60°,则∠2的度数为()A.30° B.40° C.50° D.60°5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户) 30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是216.一次函数y=kx+b的图象如图,则当0<x≤1时,y的范围是()A.y>0 B.﹣2<y≤0 C.﹣2<y≤1 D.无法判断7.如图,?ABCD中,AE平分∠BAD,若CE=3cm,AB=4cm,则?ABCD的周长是()A.20cm B.21cm C.22cm D.23cm8.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为()A.2 B.﹣2 C.3 D.﹣3二、填空题:每小题3分,共21分.9.计算:﹣14+﹣4cos30°=.10.不等式组的解集为.11.某市初中毕业女生体育中招考试项目有四项,其中"立定跳远"、"1000米跑"、"篮球运球"为必测项目,另一项从"掷实心球"、"一分钟跳绳"中选一项测试.则甲、乙、丙三位女生从"掷实心球"或"一分钟跳绳"中选择一个考试项目的概率是.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.13.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是.14.如图,在矩形ABCD中,AB=4,BC=2,以A为圆心,AB的长为半径画弧,交DC于点E,交AD延长线于点F,则图中阴影部分的面积为.15.如图,有一张长为8cm,宽为7cm的矩形纸片ABCD,现要剪下一个腰长为6cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为cm2.三、解答题:本大题8个小题,共75分.16.先化简分式:(),若该分式的值为2,求x的值.17.如图,AB是⊙O的直径,C、D为半圆O上的两点,CD∥AB,过点C作CE⊥AD,交AD的延长线于点E,tanA=.(1)求证:CE是⊙O的切线;(2)猜想四边形AOCD是什么特殊的四边形,并证明你的猜想.18.手机给人们的生活带来了很多的方便,但也出现了过度使用手机的现象,出现了所谓的"手机控"、"低头族"等,某校九年级数学兴趣小组的同学调查了若干名家长对"初中学生带手机上学"这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有名,"很赞同"初中生带手机上学的家长所对应的圆心角度数是;(2)请补全报"无所谓"态度的家长所对应的条形统计图(标上柱高数值);(3)请你对初中生是否应该带手机上学提出一个合理化的建议.19.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.20.如图1,被誉为"中原第一高楼"的郑州会展宾馆(俗称"玉米楼")就坐落在风景如画的如意湖畔,也是来郑观光的游客留影的最佳景点.学完了三角函数后,刘明和王华决定用自己学到的知识测量"玉米楼"的高度.如图2,刘明在点C处测得楼顶B的仰角为45°,王华在高台上测得楼顶的仰角为30°.若高台高DE为5米,点D到点C的水平距离EC为187.5米,A、C、E三点共线,求"玉米楼"AB的高(,结果保留整数).21."红星"中学准备为校"教学兴趣小组"购进甲、乙两种学习用具,已知5件甲种学习用具的进价与3件乙种学习用具的进价的和为231元,2件甲种学习用具的进价与3件乙种学习用具的进价的和为141元.(1)求每件甲种、乙种学习用具的进价分别是多少元?(2)如果购进甲种学习用具有优惠,优惠方法是:购进甲种学习用具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种学习用具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,学校决定在甲、乙两种学习用具中选购其中一种,且数量超过20件,请你帮助学校判断购进哪种学习用具更省钱.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).23.如图,在平面直角坐标系中,一次函数y=﹣的图象与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c关于直线x=对称,且经过A、C两点,与x轴交于另一点为B.(1)①求点B的坐标;②求抛物线的解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA、PC,若△PAC的面积是△ABC面积的,求出此时点P的坐标.(3)在抛物线的对称轴上是否存在点D,使△ADC为直角三角形?若存在,直接写出点D的坐标;若不存在,请说明理由.2016年河南省信阳市中考数学一模试卷参考答案与试题解析一、选择题:1.下列各组数中,互为倒数的是()A.2和﹣2 B.﹣2和 C.﹣2和﹣ D.﹣和2【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:2×(﹣)=1,故C正确;故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列不是三棱柱展开图的是()A. B. C. D.【考点】几何体的展开图.【分析】根据三棱柱的两底展开是三角形,侧面展开是三个四边形,可得答案.【解答】解:∵三棱柱展开图有3个四边形,2个三角形,∴C选项不是三棱柱展开图,故选:C.【点评】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.3.据统计,今年春节期间(除夕到初五),微信红包总收发次数达321亿次,几乎覆盖了全国75%的网民,数据"321亿"用科学记数法可表示为()A.3.21×108 B.321×108 C.321×109 D.3.21×1010【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:321亿=32100000000=3.21×1010,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,把等腰直角三角板的直角顶点放在刻度尺的一边上,若∠1=60°,则∠2的度数为()A.30° B.40° C.50° D.60°【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=60°,∴∠3=∠1=60°.∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户) 30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是21【考点】方差;中位数;众数;极差.【专题】计算题.【分析】根据表格中的数据,求出平均数,中位数,众数,极差与方差,即可做出判断.【解答】解:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51﹣30=21,方差为[(30﹣46.8)2+2(42﹣46.8)2+3(50﹣46.8)2+4(51﹣46.8)2]=42.96.故选C.【点评】此题考查了方差,中位数,众数,以及极差,熟练掌握各自的求法是解本题的关键.6.一次函数y=kx+b的图象如图,则当0<x≤1时,y的范围是()A.y>0 B.﹣2<y≤0 C.﹣2<y≤1 D.无法判断【考点】一次函数的性质.【分析】根据一次函数的图象与两坐标轴的交点直接解答即可.【解答】解:因为一次函数y=kx+b的图象与两坐标轴的交点分别为(1,0)、(0,﹣2),所以当0<x≤1,函数y的取值范围是:﹣2<y≤0,故选B【点评】本题考查的是用数形结合的方法求函数的取值范围,解答此题的关键是正确观察函数在平面直角坐标系内的图象,属较简单题目.7.如图,?ABCD中,AE平分∠BAD,若CE=3cm,AB=4cm,则?ABCD的周长是()A.20cm B.21cm C.22cm D.23cm【考点】平行四边形的性质.【分析】由平行四边形的性质得出AD=BC=4cm,AB=DC,AD∥BC,由平行线的性质和角平分线求出BE=AB=4cb,得出BC=7cm,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=10,AB=DC,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BCD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=4cm,∴BC=BE+CE=7cm,∴?ABCD的周长=2(DC+BC)=2(4+7)=22cm;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定、平行线的性质;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.8.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为()A.2 B.﹣2 C.3 D.﹣3【考点】反比例函数与一次函数的交点问题.【分析】想办法把C点坐标用a表示出来,然后代入y=﹣即可.【解答】解:作CE⊥x轴于E,∵AO∥CE,BA:AC=2:1,AO=OB=a,∴=,∴EB=,CE=,∴点C坐标(﹣,a),又∵点C在y=﹣上,∴﹣=﹣3,∵a>0,∴a=2.故选A.【点评】本题考查反比例函数与一次函数的有关知识,学会用转化的思想解决,把问题变成方程是解题的关键,属于中考常考题型.二、填空题:每小题3分,共21分.9.计算:﹣14+﹣4cos30°=﹣1.【考点】实数的运算;特殊角的三角函数值.【分析】首先化简二次根式以及利用特殊角的三角函数值代入求出答案.【解答】解:﹣14+﹣4cos30°=﹣1+2﹣4×=﹣1.故答案为:﹣1.【点评】此题主要考查了特殊角的三角函数值以及二次根式的性质,正确化简各数是解题关键.10.不等式组的解集为﹣3<x<﹣2.【考点】解一元一次不等式组.【分析】分别求得各不等式的解集,然后求出公共部分即可.【解答】解:,由①得:x>﹣3,由②得:x<﹣2,则不等式组的解集为﹣3<x<﹣2.故答案为:﹣3<x<﹣2.【点评】】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.某市初中毕业女生体育中招考试项目有四项,其中"立定跳远"、"1000米跑"、"篮球运球"为必测项目,另一项从"掷实心球"、"一分钟跳绳"中选一项测试.则甲、乙、丙三位女生从"掷实心球"或"一分钟跳绳"中选择一个考试项目的概率是.【考点】列表法与树状图法.【分析】首先分别用A,B代表"掷实心球"、"一分钟跳绳",然后根据题意画树状图,继而求得所有等可能的结果与甲、乙、丙三位女生从"掷实心球"或"一分钟跳绳"选择同一个测试项目的情况,利用概率公式即可求得答案.【解答】解:分别用A,B代表"掷实心球"、"一分钟跳绳",画树状图得:∵共有8种等可能的结果,甲、乙、丙三位女生从"掷实心球"或"一分钟跳绳"中选择一个考试项目的有2种情况,∴其概率是:=.故答案为:.【点评】此题考查了树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.【考点】等腰三角形的性质.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.13.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是(,﹣1)或(﹣,1).【考点】位似变换;坐标与图形性质.【分析】由以原点O为位似中心,位似比为1:2,把△ABO缩小,直接利用位似图形的性质求解即可求得答案.【解答】解:∵以原点O为位似中心,位似比为1:2,把△ABO缩小,B(5,﹣2),∴点B的对应点B′的坐标是:(,﹣1)或(﹣,1).故答案为:(,﹣1)或(﹣,1).【点评】此题考查了位似图形的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.14.如图,在矩形ABCD中,AB=4,BC=2,以A为圆心,AB的长为半径画弧,交DC于点E,交AD延长线于点F,则图中阴影部分的面积为8﹣4+π.【考点】扇形面积的计算.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得∠AED=30°,进而求得∠1=60°;由勾股定理求出DE,再根据阴影FDE的面积S1=S扇形AEF﹣S△ADE、阴影ECB的面积S2=S矩形﹣S△ADE﹣S扇形ABE列式计算即可得解.【解答】解:∵在矩形ABCD中,AB=4,BC=2,∴AB=2DA,AB=AE(扇形的半径),∴AE=2DA,∴∠AED=30°,∴∠1=90°﹣30°=60°,∵DA=2∴AB=2DA=4,∴AE=4,∴DE==2,∴阴影FDE的面积S1=S扇形AEF﹣S△ADE=﹣×2×2=π﹣2.阴影ECB的面积S2=S矩形﹣S△ADE﹣S扇形ABE=2×4﹣×2×2﹣=8﹣2﹣π;.则图中阴影部分的面积为=8﹣2﹣π+π﹣2=8﹣4+π.故答案为:8﹣4+π.【点评】本题考查了矩形的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质并求出∠AED=30°是解题的关键,也是本题的难点.15.如图,有一张长为8cm,宽为7cm的矩形纸片ABCD,现要剪下一个腰长为6cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为18或3或12cm2.【考点】勾股定理;等腰三角形的判定;矩形的性质.【专题】分类讨论.【分析】因为等腰三角形腰的位置不明确,所以分三种情况进行讨论:(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=6时,如图:∴S△AEF=AEoAF=×6×6=18(cm2);(2)当AE=EF=6时,如图:则BE=7﹣6=1,BF===,∴S△AEF=oAEoBF=×6×=3(cm2);(3)当AE=EF=6时,如图:则DE=8﹣6=2,DF===4,∴S△AEF=AEoDF=×6×4=12(cm2);故答案为:18或3或12.【点评】本题主要考查了勾股定理的运用,矩形的性质,三角形的面积,要根据三角形的腰长的不确定分情况讨论,有一定的难度.三、解答题:本大题8个小题,共75分.16.先化简分式:(),若该分式的值为2,求x的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再由该分式的值为2,求出x的值即可.【解答】解:原式=o=,∵该分式的值为2,∴=2,即2(x+2)=4,解得x=0,经检验x=0是分式方程的解.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.如图,AB是⊙O的直径,C、D为半圆O上的两点,CD∥AB,过点C作CE⊥AD,交AD的延长线于点E,tanA=.(1)求证:CE是⊙O的切线;(2)猜想四边形AOCD是什么特殊的四边形,并证明你的猜想.【考点】切线的判定;菱形的判定.【分析】(1)连接OD,由锐角三角函数得出∠A=60°,证出△OAD是等边三角形,得出∠ADO=∠AOD=60°,再证明△COD是等边三角形,得出∠COD=60°=∠ADO,证出OC∥AE,由已知条件得出CE⊥OC,即可得出结论;(2)由(1)得:△OAD和△COD是等边三角形,得出OA=AD=OD=CD=OC,即可证出四边形AOCD是菱形.【解答】(1)证明:连接OD,如图所示:∵tanA=,∴∠A=60°,∵OA=OD,∴△OAD是等边三角形,∴∠ADO=∠AOD=60°,∵CD∥AB,∴∠ODC=60°,∵OC=OD,∴△COD是等边三角形,∴∠COD=60°=∠ADO,∴OC∥AE,∵CE⊥AE,∴CE⊥OC,∴CE是⊙O的切线;(2)解:四边形AOCD是菱形;理由如下:由(1)得:△OAD和△COD是等边三角形,∴OA=AD=OD=CD=OC,∴四边形AOCD是菱形.【点评】本题考查了切线的判定、等边三角形的判定与性质、三角函数、菱形的判定;熟练掌握切线的判定方法,证明三角形是等边三角形是解决问题的关键.18.手机给人们的生活带来了很多的方便,但也出现了过度使用手机的现象,出现了所谓的"手机控"、"低头族"等,某校九年级数学兴趣小组的同学调查了若干名家长对"初中学生带手机上学"这一现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)本次调查的学生家长有200名,"很赞同"初中生带手机上学的家长所对应的圆心角度数是36°;(2)请补全报"无所谓"态度的家长所对应的条形统计图(标上柱高数值);(3)请你对初中生是否应该带手机上学提出一个合理化的建议.【考点】条形统计图;扇形统计图.【分析】(1)根据赞同的人数和所占的百分比求出总人数,再乘以无所谓所占的百分比求出无所谓的人数,用总人数减去其它的人数求出很赞同的人数,然后乘以360°求出"很赞同"初中生带手机上学的家长所对应的圆心角的度数;(2)根据(1)求出无所谓的人数可直接画出条形统计图;(3)根据学生现在正需要好好地学习,不应该带手机,网络这么发达,会影响学习.【解答】解:(1)本次调查的学生家长有=200(名),无所谓的人数是:200×20%=40(人),很赞同的人数是:200﹣50﹣40﹣90=20(人),则"很赞同"初中生带手机上学的家长所对应的圆心角度数是360°×=36°;故答案为:200,36°;(2)根据(1)求出的无所谓的人数是40,补图如下:(3)初中生不应该带手机,影响学习.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.【考点】根的判别式;三角形三边关系;等腰三角形的性质.【分析】(1)求出根的判别式,利用偶次方的非负性证明;(2)分△ABC的底边长为2、△ABC的一腰长为2两种情况解答.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.【点评】本题考查的是一元二次方程根的判别式、等腰三角形的性质,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.20.如图1,被誉为"中原第一高楼"的郑州会展宾馆(俗称"玉米楼")就坐落在风景如画的如意湖畔,也是来郑观光的游客留影的最佳景点.学完了三角函数后,刘明和王华决定用自己学到的知识测量"玉米楼"的高度.如图2,刘明在点C处测得楼顶B的仰角为45°,王华在高台上测得楼顶的仰角为30°.若高台高DE为5米,点D到点C的水平距离EC为187.5米,A、C、E三点共线,求"玉米楼"AB的高(,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x米,根据题意和正切的定义表示出DM、FM,列出方程,计算即可.【解答】解:作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x米,由题意得,DG=187.5米,CG=5米,∠BFM=45°,∠BDM=30°,则GF=CG=5米,DF=DG+GF=192.5米,FM=BM=x米,∴DM==x,∵DM﹣FM=DF,∴x﹣x=192.5,解得,x=≈275,275+5=280(米).答:"玉米楼"AB的高约为280米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确理解仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21."红星"中学准备为校"教学兴趣小组"购进甲、乙两种学习用具,已知5件甲种学习用具的进价与3件乙种学习用具的进价的和为231元,2件甲种学习用具的进价与3件乙种学习用具的进价的和为141元.(1)求每件甲种、乙种学习用具的进价分别是多少元?(2)如果购进甲种学习用具有优惠,优惠方法是:购进甲种学习用具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种学习用具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,学校决定在甲、乙两种学习用具中选购其中一种,且数量超过20件,请你帮助学校判断购进哪种学习用具更省钱.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设每件甲种学习用具的进价是a元,每件乙种学习用具的进价是b元,根据花费钱数=单价×数量,结合两种不同购进方式可列出关于a、b的二元一次方程组,解方程组即可得出结论;(2)结合优惠政策对x进行分段考虑,由花费钱数=单价×数量,可得出y关于x的函数关系式;(3)找出购进乙种学习用具x件的花费,令乙种的花费<甲种的花费找出关于x的一元一次不等式,解出不等式即可得出结论.【解答】解(1)设每件甲种学习用具的进价是a元,每件乙种学习用具的进价是b元,根据题意得:,解得:.答:每件甲种学习用具的进价是30元,每件乙种学习用具的进价是27元.(2)当0<x≤20时,y=30x;当x>20时,y=20×30+0.7×30(x﹣20)=21x+180.(3)购买x件乙种学习用具的花费为27x元,购买x件甲种学习用具的花费为(21x+180)元,令27x<21x+180,解得:x<30.即:当20<x<30时,购进乙种学习用具更省钱;当x=30时,两种学习用具的花费一样;当x>30时,购买甲种学习用具更省钱.【点评】本题考查了解二元一次方程组、一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据已知列出关于a、b的二元一次方程组;(2)结合优惠政策分段寻找函数解析式;(3)令购买乙种的花费<购买甲种的花费找出此时的x的取值范围.本题属于中档题,难度不大,解决该类型题目时,把握住数量关系是关键.22.阅读并完成下面的数学探究:(1)【发现证明】如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,小颖把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.(2)【类比延伸】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系∠EAF=∠BAD时,仍有EF=BE+FD.(3)【结论应用】如图(3),四边形ABCD中,AB=AD=80,∠B=60°,∠ADC=120°,∠BAD=150°,点E、F分别在边BC、CD上,且AE⊥AD,DF=40(),连E、F,求EF的长(结果保留根号).【考点】四边形综合题.【分析】(1)根据旋转变换的性质和正方形的性质证明△EAF≌△GAF,得到EF=FG,证明结论;(2)把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,证明△EAF≌△HAF,证明即可;(3)延长BA交CD的延长线于P,连接AF,根据四边形内角和定理求出∠C的度数,得到∠P=90°,求出PD、PA,证明∠EAF=∠BAD,又(2)的结论得到答案.【解答】(1)证明:由旋转的性质可知,△ABE≌△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠ADG=∠ABE=90°,∴G、D、F在同一条直线上,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAG=90°,又∠EAF=45°,∴∠FAG=45°,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∴EF=BE+FD;(2)当∠EAF=∠BAD时,仍有EF=BE+FD.证明:如图(2),把△ABE绕点A逆时针旋转至△ADH,使AB与AD重合,则BE=DH,∠BAE=∠DAH,∠ADH=∠B,又∠B+∠D=180°,∴∠ADH+∠D=180°,即F、D、H在同一条直线上,当∠EAF=∠BAD时,∠EAF=∠HAF,由(1)得,△EAF≌△HAF,则EF=FH,即EF=BE+FD,故答案为:∠EAF=∠BAD;(3)如图(3),延长BA交CD的延长线于P,连接AF,∵∠B=60°,∠ADC=120°,∠BAD=150°,∴∠C=30°,∴∠P=90°,又∠ADC=120°,∴∠ADP=60°,∴PD=AD×cos∠ADP=40,AP=AD×sin∠ADP=40,∴PF=PD+DF=40,∴PA=PF,∴∠PAF=45°,又∠PAD=30°,∴∠DAF=15°,∴∠EAF=75°,∠BAE=60°,∴∠EAF=∠BAD,由(2)得,EF=BE+FD,又BE=BA=80,∴EF=BE+FD=40().【点评】本题考查的是正方形的性质、旋转变换的性质、全等三角形的判定和性质,掌握正方形的四条边都相等、四个角都是直角,旋转变换的旋转角相等、旋转后的三角形与原三角形全等是解题的关键.23.如图,在平面直角坐标系中,一次函数y=﹣的图象与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c关于直线x=对称,且经过A、C两点,与x轴交于另一点为B.(1)①求点B的坐标;②求抛物线的解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA、PC,若△PAC的面积是△ABC面积的,求出此时点P的坐标.(3)在抛物线的对称轴上是否存在点D,使△ADC为直角三角形?若存在,直接写出点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)①由直线过点A,可得出点A的坐标,由A、B关于直线x=对称可找出B点的坐标;②由直线经过点C可求出点C的坐标,利用待定系数法即可求出抛物线的解析式;(2)由△PAC的面积是△ABC面积的,结合同底三角形的面积公式即可得出点P到直线AC的距离为点B到直线AC的距离的,设出P点坐标,由点到直线的距离可列出关于m的一元二次方程,解方程即可得出结论;(3)假设存在,设出D点坐标,由两点间的距离公式用n表示出各边长度,结合勾股定理分别讨论即可得出结论.【解答】解:(1)①令y=﹣=0,解得:x=4,即点A的坐标为(4,0).∵A、B关于直线x=对称,∴点B的坐标为(﹣1,0).②令x=0,则y=2,∴点C的坐标为(0,2),∵抛物线y=ax2+bx+c经过点A、B、C,∴有,解得:.故抛物线解析式为y=﹣++2.(2)直线AC的解析式为y=﹣,即x+y﹣2=0,设点P的坐标为(m,﹣+m+2),∵点P为直线AC上方的抛物线上的一点,∴0<m<4.∵△PAC的面积是△ABC面积的,∴点P到直线AC的距离为点B到直线AC的距离的.由点到直线的距离可知:|m﹣+m+2﹣2|=|﹣﹣2|,即m2﹣4m+3=0,解得:m1=1,m2=3.所以点P的坐标为(1,3)或(3,2).(3)假设存在,设D点的坐标为(,n).由两点间的距离公式可知:AC==2,AD=,CD=,△ADC为直角三角形分三种情况:①AC2+AD2=CD2,此时有4n=﹣20,解得:n=﹣5,此时点D的坐标为(,﹣5);②AC2+CD2=AD2,此时有20﹣4n=0,解得:n=5,此时点D的坐标为(,5);③AD2+CD2=AC2,此时有4n2﹣8n﹣15=0,解得:n=1±.此时点D的坐标为(,1+)和(,1﹣).综上可知:在抛物线的对称轴上存在点D,使△ADC为直角三角形,点D的坐标为(,﹣5)、(,5)、(,1﹣)和(,1+).【点评】本题考查了待定系数法求解析式、点到直线的距离以及勾股定理,解题的关键是(1)待定系数法求解析式;(2)结合点到直线的距离列出关于m的一元二次方程;(3)结合两点间的距离公式和勾股定理得出关于n的方程.本题属于中档题,(1)难度不大,(2)可以借助点到直线的距离找出关于m的一元二次方程来解决问题,(3)分情况讨论找出点D的纵坐标.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。