资源资源简介:
2016年中考数学热点复习模拟试题18:等腰三角形与直角三角形专题18等腰三角形与直角三角形?解读考点知识点 名师点晴等腰三角形 等腰三角形的性质 理解等腰三角形的性质,并能解决等腰三角形的有关计算 等腰三角形的判定 掌握等腰三角形的判定方法,会证明一个三角形是等腰三角形等边三角形 等边三角形的性质 理解等边三角形的性质 等边三角形的判定 掌握等边三角形的判定方法,会证明一个三角形是等边三角形直角三角形 直角三角形的性质 理解直角三角形的有关性质 直角三角形的判定 掌握直角三角形的判定方法,会证明一个三角形是直角三角形 勾股定理 理解并掌握勾股定理及其逆定理?2年中考【2015年题组】1.(2015来宾)下列各组线段中,能够组成直角三角形的一组是()A.1,2,3B.2,3,4C.4,5,6D.1,,【答案】D.【解析】试题分析:A.,不能组成直角三角形,故错误;B.,不能组成直角三角形,故错误;C.,不能组成直角三角形,故错误;D.,能够组成直角三角形,故正确.故选D.考点:勾股定理的逆定理.2.(2015南宁)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【答案】A.考点:等腰三角形的性质.3.(2015来宾)如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°【答案】D.【解析】试题分析:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.4.(2015内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°【答案】A.【解析】试题分析:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.考点:1.等腰三角形的性质;2.平行线的性质.5.(2015荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或12【答案】C.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(2015广州)已知2是关于x的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10B.14C.10或14D.8或10【答案】B.【解析】试题分析:∵2是关于x的方程的一个根,∴,,∴,解得x=2或x=6.①当6是腰时,2是等边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B.考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.7.(2015丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【答案】A.考点:等腰三角形的性质.8.(2015龙岩)如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.1【答案】D.【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BCotan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.9.(2015乐山)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【答案】D.考点:1.锐角三角函数的定义;2.勾股定理;3.勾股定理的逆定理;4.网格型.10.(2015资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.cm C.cm D.cm【答案】A.考点:1.平面展开-最短路径问题;2.最值问题.11.(2015德阳)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是()A.60°B.45°C.30°D.75°【答案】C.【解析】试题分析:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.故选C.考点:1.直角三角形斜边上的中线;2.轴对称的性质.12.(2015眉山)如图,在Rt△ABC中,∠B=900,∠A=300,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=l,则AC的长是()A.B.2C.D.4【答案】A.考点:1.含30度角的直角三角形;2.线段垂直平分线的性质;3.勾股定理.13.(2015荆门)如图,在△ABC中,∠BAC=Rt∠,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.C.D.【答案】A.【解析】试题分析:∵在△ABC中,∠BAC=Rt∠,AB=AC,∴∠ABC=∠C=45°,BC=AC,又∵点D为边AC的中点,∴AD=DC=AC,∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC,∴tan∠DBC===.故选A.考点:1.解直角三角形;2.等腰直角三角形.14.(2015襄阳)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1C.D.2【答案】B.考点:1.含30度角的直角三角形;2.角平分线的性质;3.线段垂直平分线的性质.15.(2015北京市)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5kmB.0.6kmC.0.9kmD.1.2km【答案】D.【解析】试题分析:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=AM=1.2km.故选D.考点:1.直角三角形斜边上的中线;2.应用题.16.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A.2B.3C.4D.5【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.17.(2015龙岩)如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.1【答案】D.考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.18.(2015龙东)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5【答案】A.【解析】试题分析:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE),PD+PE=4.8.故选A.考点:1.勾股定理;2.等腰三角形的性质;3.动点型.19.(2015安顺)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.6【答案】A.考点:1.翻折变换(折叠问题);2.勾股定理.20.(2015滨州)如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分【答案】B.【解析】试题分析:连接OC、OC′,如图,∵∠AOB=90°,C为AB中点,∴OC=AB=A′B′=OC′,∴当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,∴滑动杆的中点C所经过的路径是一段圆弧.故选B.考点:1.轨迹;2.直角三角形斜边上的中线.21.(2015烟台)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A.B.C.D.【答案】C.考点:1.等腰直角三角形;2.正方形的性质;3.规律型;4.综合题.22.(2015烟台)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程的两根,则n的值为()A.9B.10C.9或10D.8或10【答案】B.【解析】试题分析:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况:①当a=2,或b=2时,∵a,b是关于x的一元二次方程的两根,∴x=2,把x=2代入得,4﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意;②当a=b时,方程有两个相等的实数根,∴△=﹣4(n﹣1)=0,解得:n=10,故选B.考点:1.根的判别式;2.一元二次方程的解;3.等腰直角三角形;4.分类讨论.23.(2015崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A.160B.161C.162D.163【答案】B.考点:1.规律型;2.综合题.24.(2015宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为.【答案】5.考点:1.三角形中位线定理;2.直角三角形斜边上的中线.25.(2015常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.【答案】(400,800).【解析】试题分析:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中,∵AD=AB,∠ODA=∠ABC,DO=BC,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用.26.(2015南通)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.【答案】52.考点:等腰三角形的性质.27.(2015苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.【答案】27.【解析】试题分析:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,∴GE=BC=6,∴△CEG的周长=CG+GE+CE=9+6+12=27.故答案为:27.考点:1.三角形中位线定理;2.等腰三角形的性质;3.轴对称的性质.28.(2015西宁)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.【答案】110°或70°.考点:1.等腰三角形的性质;2.分类讨论.29.(2015南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.【答案】45°.【解析】试题分析:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.考点:1.正方形的性质;2.等边三角形的性质.30.(2015攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.【答案】.考点:1.轴对称-最短路线问题;2.等边三角形的性质;3.最值问题;4.综合题.31.(2015昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.32.(2015淄博)如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.【答案】120,150.【解析】试题分析:∵等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,∴∠ABD=∠ABC﹣∠DBC=60°﹣45°=15°,在△ABD与△ACD中,∵AB=AC,∠ABD=∠ACD,BD=CD,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD=30°,∴过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是180°﹣15°﹣15°=150°;180°﹣30°﹣30°=120°,故答案为:120,150.考点:1.等腰直角三角形;2.等腰三角形的性质;3.等边三角形的性质;4.综合题.33.(2015黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为__________.【答案】126或66.考点:1.勾股定理;2.分类讨论;3.综合题.34.(2015庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)【答案】.【解析】试题分析:如图所示,∵无弹性的丝带从A至C,绕了1.5圈,∴展开后AB=1.5×2π=3πcm,BC=3cm,由勾股定理得:AC===cm.故答案为:.考点:1.平面展开-最短路径问题;2.最值问题.35.(2015朝阳)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).【答案】2.9.考点:勾股定理的应用.36.(2015辽阳)如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD的长等于.【答案】8.【解析】试题分析:∵BD⊥AC于D,点E为AB的中点,∴AB=2DE=2×5=10,∴在Rt△ABD中,BD===8.故答案为:8.考点:1.直角三角形斜边上的中线;2.勾股定理.37.(2015柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.【答案】(1)3;(2)6.考点:1.勾股定理;2.三角形中位线定理.38.(2015柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?【答案】(1)4;(2)t=6或.考点:1.平行四边形的判定与性质;2.勾股定理的逆定理;3.直角梯形;4.动点型;5.分类讨论;6.综合题.【2014年题组】1.(2014·江苏省盐城市)若等腰三角形的顶角为40°,则它的底角度数为() A. 40° B. 50° C. 60° D. 70°【答案】D.【解析】试题分析:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选D.考点:等腰三角形的性质.2.(2014·桂林)下列命题中,是真命题的是()A.等腰三角形都相似B.等边三角形都相似C.锐角三角形都相似D.直角三角形都相似【答案】B.【解析】试题分析:根据相似三角形的判定,只有等边三角形的内角都相等,为60°,从而都相似.故选B.考点:1.命题和定理;2.相似三角形的判定;3.等边三角形的性质.3.(2014湖南省湘西州)如图,在Rt△ABC中,∠ACB=90°,CA=CB,AB=2,过点C作CD⊥AB,垂足为D,则CD的长为() A. B. C. 1 D. 2【答案】C.考点:等腰直角三角形.4.(2014贵州安顺市)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为() A. 7或8 B.6或1O C.6或7 D.7或10【答案】A.【解析】试题分析:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选A.考点:1.等腰三角形的性质;2.非负数的性质:偶次方;3.非负数的性质:算术平方根;4.解二元一次方程组;5.三角形三边关系.5.(2014张家界)如图,在中,,DE是斜边AC的中垂线分别交AB、AC于D、E两点,若BD=2,则AC的长是()A.4BC.8D.【答案】B.考点:1.线段垂直平分线的性质;2.含30度角的直角三角形;3.勾股定理.6.(2014吉林)如图,△ABC中,∠C=45°,点D在AB上,点E在BC上.若AD=DB=DE,AE=1,则AC的长为() A. B. 2 C. D. 【答案】D考点:1、等腰直角三角形;2、等腰三角形的判定与性质.7.(2014吉林)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.【答案】(﹣1,2)【解析】试题分析:∵直线y=2x+4与y轴交于B点,∴y=0时,2x+4=0,解得x=﹣2,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.故C′的坐标为(﹣1,2).考点:1、一次函数图象上点的坐标特征;2、等边三角形的性质.8.(2014毕节)如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.【答案】.考点:1.折叠的性质;2.勾股定理;3.方程思想的应用?考点归纳归纳1:等腰三角形基础知识归纳:1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60°。2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。基本方法归纳:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。③等腰三角形的三边关系:设腰长为a,底边长为b,则<a④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°-2∠B,∠B=∠C=注意问题归纳:等腰三角形的性质与判定经常用来计算三角形的角的有关问题,并证明角相等的问题。【例1】已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为() A. 7 B. 8 C. 6或8 D. 7或8【答案】D.考点:1.等腰三角形的性质;2.三角形三边关系.归纳2:等边三角形基础知识归纳:1.定义三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°3.判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.基本方法归纳:线段垂直平分线上的一点到这条线段的两端距离相等;到一条线段两端点距离相等的点,在这条线段的垂直平分线上.注意问题归纳:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。【例2】如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是【答案】400.考点:1.等边三角形的判定与性质;2.平移的性质.归纳3:直角三角形基础知识归纳:有一个角是直角的三角形叫作直角三角形直角三角形的性质:(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.基本方法归纳:(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.注意问题归纳:注意区分直角三角形的性质与直角三角形的判定,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,它的逆命题不能直接使用。【例3】如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为()A.B.C.D.【答案】D【解析】考点:1.勾股定理;2.直角三角形斜边上的中线.归纳4:勾股定理基础知识归纳:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2;基本方法归纳:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.注意问题归纳:勾股定理的逆定理也是判定直角三角形一种常用的方法,通常与直角三角形的性质结合起来考查。【例4】如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.【答案】8.【解析】试题分析:∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5.∴AC=10.在Rt△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD=.考点:1.直角三角形斜边上的中线性质;2.勾股定理.?1年模拟1.(2015届广东省广州市中考模拟)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.2B.2C.D.【答案】B.考点:1.梯形;2.等腰三角形的判定与性质;3.勾股定理;4.三角形中位线定理.2.(2015届山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A.B.C.D.【答案】A.【解析】考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.3.(2015届安徽省安庆市中考二模)如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB【答案】D.【解析】试题分析:过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,,∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.平行线的性质.4.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±【答案】D.考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.分类讨论.5.(2015届四川省成都市外国语学校中考直升模拟)已知直角三角形两边x、y的长满足|x2-4|+=0,则第三边长为.【答案】、或.【解析】试题分析:∵|x2-4|≥0,,∴x2-4=0,y2-5y+6=0,∴x=2或-2(舍去),y=2或3,①当两直角边是2时,三角形是直角三角形,则斜边的长为:;②当2,3均为直角边时,斜边为;③当2为一直角边,3为斜边时,则第三边是直角,长是.考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理;4.分类讨论.6.(2015届四川省成都市外国语学校中考直升模拟)如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.【答案】.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义.7.(2015届山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【答案】.【解析】试题分析:过点C作CD和CE垂直正方形的两个边长,如图,∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=ABoCE=×1×=.故答案为:.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.8.(2015届山东省日照市中考模拟)如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为"2"和"8"(单位:cm),则该圆的半径为cm.【答案】.考点:1.切线的性质;2.勾股定理;3.垂径定理.9.(2015届山东省日照市中考模拟)已知△ABC中,点D在BC边上,且DC=6、S△ADC=15、∠B=45°,△ABD是等腰三角形,则S△ABD=【答案】或或25.【解析】试题分析:△ACD中,DC边上的高为15×2÷6=5,AD=BD,如图1所示:AD=BD=5,S△ABD=5×5÷2=;(2)BA=BD,如图2所示:BA=BD=5×=5,S△ABD=5×5÷2=;考点:1.等腰三角形的性质;2.等腰直角三角形;3.分类讨论.10.(2015届山东省青岛市李沧区中考一模)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.【答案】.考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(2015届山东省青岛市李沧区中考一模)如图,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个"半圆柱"而成,中间可供滑行的部分的截面是半径为5m的半圆,其边缘AB=CD=20cm,小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为m.(π取3)【答案】.【解析】试题分析:其侧面展开图如图:作点C关于AB的对称点F,连接DF,∵中间可供滑行的部分的截面是半径为5cm的半圆,∴BC=πR=5π=15cm,AB=CD=20cm,∴CF=30cm,在Rt△CDF中,DF=cm,故他滑行的最短距离约为cm.故答案为:.考点:平面展开-最短路径问题.12.(2015届湖北省黄石市6月中考模拟)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是__________.【答案】2.考点:1.相似三角形的判定与性质;2.勾股定理;3.锐角三角函数的定义;4.网格型.13.(2015届山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC=m2.【答案】4.【解析】试题解析:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC=S△ABC=×8=4(m2).考点:1.等腰三角形的判定与性质;2.三角形的面积.14.(2015届山东省日照市中考模拟)已知△ABC中,点D在BC边上,且DC=6、S△ADC=15、∠B=45°,△ABD是等腰三角形,则S△ABD=【答案】或或25.(2)BA=BD,如图2所示:BA=BD=5×=5,S△ABD=5×5÷2=;(3)AB=AD,如图3所示;BD=5×2=10,S△ABD=10×5÷2=25.故答案为:或或25.考点:1.等腰三角形的性质;2.等腰直角三角形;3.分类讨论.15.(2015届山东省聊城市中考模拟)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).【答案】45°.考点:等腰三角形的性质.16.(2015届山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【答案】.【解析】试题分析:过点C作CD和CE垂直正方形的两个边长,如图,∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=ABoCE=×1×=.故答案为:.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.17.(2015届山东省聊城市中考模拟)已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.【答案】(1)证明见解析;(2)证明见解析.考点:1.三角形中位线定理;2.等腰三角形的判定与性质;3.直角三角形斜边上的中线;4.平行四边形的性质.18.(2015届安徽省安庆市中考二模)如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC,AB于E,F,连接BE,CF,分别交DF,DE于点N,M,连接MN.试判断△DMN的形状,并说明理由.【答案】△DMN为等边三角形,理由见解析.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质.19.(2015届山东省日照市中考模拟)如图:在矩形ABCD中,AD=60cm,CD=120cm,E、F为AB边的三等分点,以EF为边在矩形内作等边三角形MEF,N为AB边上一点,EN=10cm;请在矩形内找一点P,使△PMN为等边三角形(画出图形,并直接写出△PMF的面积).【答案】作图见解析.【解析】试题分析:如图,以MN为边容易作出等边三角形,结合等边三角形的性质,连接PE,可证明△MPE≌△MNF,可证明PE∥MF,容易求得S△PMF=S△MEF,可求得答案.试题解析:如图,以MN为边,可作等边三角形PMN;△PMF的面积为400.(求解过程如下).连接PE,考点:1.矩形的性质;2.等边三角形的判定与性质;3.作图-应用与设计作图.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。