资源资源简介:
免费2018年鞍山市铁西区中考数学模拟试卷含答案试卷分析详解2018年辽宁省鞍山市铁西区中考数学模拟试卷(3月份)一、选择题(共8小题,每小题3分,共24分)1.(3分)2018的相反数是()A.8102 B.﹣2018 C. D.20182.(3分)如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是()A. B. C. D.3.(3分)下列运算正确的是()A.3a2﹣2a2=1 B.a2oa3=a6C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b24.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34° B.54° C.56° D.66°5.(3分)七年级学生完成课题学习"从数据谈节水"后,积极践行"节约用水,从我做起",现在从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况如下表:节水量(m3) 0.2 0.25 0.3 0.4 0.5家庭数 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4m3和0.34m3 B.0.4m3和0.3m3C.0.25m3和0.34m3 D.0.25m3和0.3m36.(3分)若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>17.(3分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤=正确的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(共8小题,每小题3分,共24分)9.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为.10.(3分)分解因式:x3y﹣xy=.11.(3分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有个红球.12.(3分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.[来源:学科网]13.(3分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.14.(3分)如图,Rt△ABC的直角边BC在x轴正半轴上,点D为斜边AC上一点,AD=2CD,DB的延长线交y轴于点E,函数y=(k>0)的图象经过点A,若S△BCE=2,则k=.15.(3分)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是(把你认为正确结论的序号都填上).16.(3分)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P2017,把△ABC分成个互不重叠的小三角形.三、解答题(共2小题,每题8分,共16分)17.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.18.(8分)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?[来源:学。科。网Z。X。X。K]四、解答题(共2小题,每题10分,共20分)19.(10分)如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.20.(10分)如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.五、解答题(共2小题,每题10分,共20分)21.(10分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就"学生体育活动兴趣爱好"的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,"乒乓球"的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.22.(10分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.[来源:Z,xx,k.Com]六、解答题(第23题10分,第24题11分,共21分)23.(10分)铁岭"荷花节"举办了为期15天的"荷花美食"厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:第x天 1≤x≤6 6<x≤15每天的销售量y/盒 10 x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在"荷花美食"厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.24.(10分)问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.七、解答题(本题12分)25.(12分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.八、解答题(本题14分)26.(14分)如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.(1)判断△ABC形状,并说明理由.(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+MC的最小值;(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.2018年辽宁省鞍山市铁西区中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.(3分)2018的相反数是()A.8102 B.﹣2018 C. D.2018【解答】解:2018的相反数﹣2018,故选:B.2.(3分)如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是()A. B. C. D.【解答】解:观察几何体,从左面看到的图形是故选:D.3.(3分)下列运算正确的是()A.3a2﹣2a2=1 B.a2oa3=a6C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2【解答】解:A、3a2﹣2a2=a2,故A错误;B、a2oa3=a5,故B错误;C、(a﹣b)2=a2﹣2ab+b2,故C错误;D、(a+b)2=a2+2ab+b2,故D正确;故选:D.4.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34° B.54° C.56° D.66°【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故选:C.5.(3分)七年级学生完成课题学习"从数据谈节水"后,积极践行"节约用水,从我做起",现在从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况如下表:节水量(m3) 0.2 0.25 0.3 0.4 0.5家庭数 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4m3和0.34m3 B.0.4m3和0.3m3C.0.25m3和0.34m3 D.0.25m3和0.3m3【解答】解:将数据按从大到小的顺序排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则众数为:0.4m3;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34m3.故选:A.6.(3分)若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>1【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴△>0,即(﹣6)2﹣4×9k>0,解得,k<1,∵为一元二次方程,∴k≠0,∴k<1且k≠0.故选:A.7.(3分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤=正确的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤【解答】解:∵∠ACB=45°,∴由圆周角定理得:∠BOD=2∠ACB=90°,∴①正确;∵AB切⊙O于B,∴∠ABO=90°,∴∠DOB+∠ABO=180°,∴DO∥AB,∴②正确;假如CD=AD,因为DO∥AB,所以CE=BE,根据垂径定理得:OD⊥BC,则∠OEB=90°,∵已证出∠DOB=90°,∴此时△OEB不存在,∴③错误;∵∠DOB=90°,OD=OB,∴∠ODB=∠OBD=45°=∠ACB,即∠ODB=∠C,∵∠DBE=∠CBD,∴△BDE∽△BCD,∴④正确;过E作EM⊥BD于M,则∠EMD=90°,∵∠ODB=45°,∴∠DEM=45°=∠EDM,∴DM=EM,设DM=EM=a,则由勾股定理得:DE=a,∵∠ABC=180°﹣∠C﹣∠A=75°,又∵∠OBA=90°,∠OBD=45°,∴∠OBC=15°,∴∠EBM=30°,在Rt△EMB中BE=2EM=2a,∴==,∴⑤正确;故选:C.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解答】解:∵x=﹣=2,∴4a+b=0,故①正确.由函数图象可知:当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故②正确.∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0又∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣5a=14a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故③错误;∵抛物线的对称轴为x=2,C(7,y3),∴(﹣3,y3).∵﹣3<﹣,在对称轴的左侧,∴y随x的增大而增大,∴y1=y3<y2,故④错误.方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,依据函数图象可知:x1<﹣1<5<x2,故⑤正确.故选:B.二、填空题(共8小题,每小题3分,共24分)9.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为4.4×106.【解答】解:将4400000用科学记数法表示为:4.4×106.故答案为:4.4×106.10.(3分)分解因式:x3y﹣xy=xy(x+1)(x﹣1).【解答】解:原式=xy(x2﹣1)=xy(x+1)(x﹣1),故答案为:xy(x+1)(x﹣1)11.(3分)一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有6个红球.【解答】解:设袋中有x个红球.由题意可得:=0.2,解得:x=6,即袋中有6个红球,故答案为:6.12.(3分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为﹣4<x<﹣.【解答】解:不等式mx+2<kx+b<0的解集是﹣4<x<﹣.故答案是:﹣4<x<﹣.13.(3分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为1.5或3.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.14.(3分)如图,Rt△ABC的直角边BC在x轴正半轴上,点D为斜边AC上一点,AD=2CD,DB的延长线交y轴于点E,函数y=(k>0)的图象经过点A,若S△BCE=2,则k=8.【解答】解:连结OA、EA,如图,∵AD=2CD,∴S△ADE=2S△CDE,S△ADB=2S△CDB,即S△ABE+S△ADE=2(S△CDB+S△BCE),∴S△ABE=2S△BCE=2×2=4,∵OE∥AB,∴S△ABE=SOAB=4,∴×|k|=4,而k>0,∴k=8.故答案为8.15.(3分)如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是①②(把你认为正确结论的序号都填上).【解答】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF,在△BOE与△COF中,,∴△BOE≌△COF,∴BE=CF,∴=,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,∴△BOG≌△COH;∴OG=OH,∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确.③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=4,设BG=x,则BH=4﹣x,则GH==,∴其最小值为4+2,D错误.故答案为:①②.16.(3分)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P2017,把△ABC分成4035个互不重叠的小三角形.【解答】解:如图,△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1、P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1、P2、P3、…、Pn,把△ABC分成的互不重叠的小三角形的个数=3+2(n﹣1)=2n+1,当n=2017时,2n+1=4035,故答案为:4035.三、解答题(共2小题,每题8分,共16分)17.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【解答】解:(﹣a+1)÷===,当a=0时,原式=.18.(8分)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.四、解答题(共2小题,每题10分,共20分)19.(10分)如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.【解答】解:过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=10.由题意得∠ADE=α,∠E=45°.设AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF===,∵DE=13.3,∴x+=13.3.∴x=11.4.∴AG=AF﹣GF=11.4﹣10=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°.∴AB=2AG=2.8,答:灯杆AB的长度为2.8米.20.(10分)如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.【解答】证明:(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=BD=,PB=PD=3,在Rt△DEP中,∵PD=,DE=,∴PE==2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1:,∴AE=∵BE∥DF,∴△ABE∽△AFD,∴=,即=,解得DF=12,在Rt△BDH中,BH=BD=,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=o12o﹣+o(2)2=9﹣2π;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,∵=,∴CD=BD=2,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴=,即=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴=,即=,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.五、解答题(共2小题,每题10分,共20分)21.(10分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就"学生体育活动兴趣爱好"的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有5人,在扇形统计图中,"乒乓球"的百分比为20%,如果学校有800名学生,估计全校学生中有80人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.【解答】解:(1)调查的总人数为20÷40%=50(人),所以喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);"乒乓球"的百分比==20%,因为800×=80,所以估计全校学生中有80人喜欢篮球项目;故答案为5,20,80;(2)如图,(3)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率==.22.(10分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【解答】解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.六、解答题(第23题10分,第24题11分,共21分)23.(10分)铁岭"荷花节"举办了为期15天的"荷花美食"厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:第x天 1≤x≤6 6<x≤15每天的销售量y/盒[来源:学|科|网] 10 x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在"荷花美食"厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.【解答】解:(1)设p=kx+b(k≠0),∵第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴,解得,所以,p=x+18;(2)1≤x≤6时,w=10[50﹣(x+18)]=﹣10x+320,6<x≤15时,w=[50﹣(x+18)](x+6)=﹣x2+26x+192,所以,w与x的函数关系式为w=,1≤x≤6时,∵﹣10<0,∴w随x的增大而减小,∴当x=1时,w最大为﹣10+320=310,6<x≤15时,w=﹣x2+26x+192=﹣(x﹣13)2+361,∴当x=13时,w最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w=325时,﹣x2+26x+192=325,x2﹣26x+133=0,解得x1=7,x2=19,所以,7≤x≤15时,即第7、8、9、10、11、12、13、14、15天共9天销售利润不低于325元.24.(10分)问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【解答】解:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.七、解答题(本题12分)25.(12分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=4求BN的长;(2)已知点C是线段AB上的一定点,其位置如图2所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(3)如图3,正方形ABCD中,M,N分别在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分别交BD于E,F求证:①E、F是线段BD的勾股分割点;②△AMN的面积是△AEF面积的两倍.【解答】解:(1)解:(1)①当MN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BM===,②当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===5,综上,BN=或5;(2)作法:①在AB上截取CE=CA;②作AE的垂直平分线,并截取CF=CA;③连接BF,并作BF的垂直平分线,交AB于D;[来源:Zxxk.Com]点D即为所求;如图2所示.(3)①如图3中,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°﹣∠EAF=45°,∠DAF=∠BAH,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AF,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE2=BH2+BE2,∵BH=DF,EF=HE,∵EF2=BE2+DF2,∴E、F是线段BD的勾股分割点.②证明:如图4中,连接FM,EN.∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∵∠AFE=∠FDN,∴△AFE∽△DFN,∴∠AEF=∠DNF,=,∴=,∵∠AFD=∠EFN,∴△AFD∽△EFN,∴∠DAF=∠FEN,∵∠DAF+∠DNF=90°,∴∠AEF+∠FEN=90°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,∵S△AMN=AMoANosin45°,S△AEF=AEoAFosin45°,∴==2,∴S△AMN=2S△AEF.八、解答题(本题14分)26.(14分)如图1,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B、两点(点A在点B的左侧),与y轴交于点C.(1)判断△ABC形状,并说明理由.(2)在抛物线第四象限上有一点,它关于x轴的对称点记为点P,点M是直线BC上的一动点,当△PBC的面积最大时,求PM+MC的最小值;(3)如图2,点K为抛物线的顶点,点D在抛物线对称轴上且纵坐标为,对称轴右侧的抛物线上有一动点E,过点E作EH∥CK,交对称轴于点H,延长HE至点F,使得EF=,在平面内找一点Q,使得以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴,请问是否存在这样的点Q,若存在请直接写出点E的横坐标,若不存在,请说明理由.【解答】解:(1)结论:△ABC是直角三角形.理由如下,对于抛物线y=x2﹣x﹣,令y=0得x2﹣x﹣=0,解得x=﹣或3;令x=0得y=﹣,∴A(﹣,0),C(0,﹣),B(3,0),∴OA=,OC=,OB=3,∴==,∵∠AOC=∠BOC,∴△AOC∽△COB,∴∠ACO=∠OBC,∵∠OBC+∠OCB=90°,∴∠ACO+∠BCO=90°,∴∠ACB=90°.(也可以求出AC、BC、AB利用勾股定理的逆定理证明).(2)如图1中,设第四象限抛物线上一点N(m,m2﹣m﹣),点N关于x轴的对称点P(m,﹣m2+m+),作过B、C分别作y轴,x轴的平行线交于点G,连接PG.∵G(3,﹣),∴S△PBC=S△PCG+S△PBG﹣S△BCG=××(﹣m2+m+2)+×o(3﹣m)﹣××=﹣(m﹣)2+.∵﹣<0,∴当m=时,△PBC的面积最大,此时P(,),如图2中,作ME⊥CG于M.∵CG∥OB,∴∠OBC=∠ECM,∵∠BOC=∠CEM,∴△CEM∽△BOC,∵OC:OB:BC=1:3:,∴EM:CE:CM=1:3:,∴EM=CM,∴PM+CM=PM+ME,∴根据垂线段最短可知,当PE⊥CG时,PM+ME最短,∴PM+MC的最小值为+=.(3)存在.理由如下,①如图3中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.作CG⊥HK于G,PH∥x轴,EP⊥PH于P.∵FH∥CK,K(,﹣),易知CG:GK:CK=3:4:5,由△EPH∽△KGC,得PH:PE:EH=3:4:5,设E((n,n2﹣n﹣),则HE=(n﹣),PE=(n﹣),∵DH=HF,∴+[﹣n2+n+﹣(n﹣)]=(n﹣)+,解得n=或(舍弃).②如图4中,当DH=HF,HQ平分∠DHF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.同法可得[n2﹣n﹣+(n﹣)]﹣=(n﹣)+,解得n=+或﹣(舍弃).③如图5中,当DH=DF,DQ平分∠HDF时,以点F、H、D、Q为顶点的四边形是轴对称图形,且过点Q的对角线所在的直线是对称轴.设DQ交HF于M.由△DHM∽△CKG,可知HM:DH=4:5,[(n﹣)+]:[n2﹣n﹣+(n﹣)﹣]=4:5,解得n=+或=﹣(舍弃),④如图6中,当FQ平分∠DFH时,满足条件,此时=.∴5×[n2﹣n﹣﹣+(n﹣)]=4[(n﹣)+],解得:n=或(舍弃)综上所,满足条件的点E的横坐标为或+或+或.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。