资源资源简介:
免费2015-2017学年文科真题分项解析—专题04:导数与函数的单调性1.【2017浙江,7】函数y=f(x)的导函数的图像如图所示,则函数y=f(x)的图像可能是【答案】D 【考点】导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间.2【2015高考湖南,文8】设函数,则是()A、奇函数,且在(0,1)上是增函数B、奇函数,且在(0,1)上是减函数C、偶函数,且在(0,1)上是增函数D、偶函数,且在(0,1)上是减函数【答案】A【解析】函数,函数的定义域为(-1,1),函数所以函数是奇函数.,在(0,1)上,所以在(0,1)上单调递增,故选A.【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数在(a,b)内的单调性的步骤:(1)求;(2)确认在(a,b)内的符号;(3)作出结论:时为增函数;时为减函数.研究函数性质时,首先要明确函数定义域.3.【2014全国2,文11】若函数在区间单调递增,则的取值范围是()(A)(B)(C)(D)【答案】D【考点定位】函数的单调性.【名师点睛】本题考查了利用函数的导数研究函数的单调性,不等式的恒成立,属于中档题,深入理解函数的单调性与函数导数之间的关系是解题的关键,注意不等式的恒成立的处理时端点值能否取到认真判断.4.【2016高考新课标1文数】若函数在单调递增,则a的取值范围是()(A)(B)(C)(D)【答案】C【解析】试题分析:对恒成立,故,即恒成立,即对恒成立,构造,开口向下的二次函数的最小值的可能值为端点值,故只需保证,解得.故选C.考点:三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性.5.【2014湖南文9】若,则() A. B. C. D. 【答案】C【考点定位】导数单调性【名师点睛】本题主要考查了利用导数研究函数的性质,解决问题的关键是根据所给选项构造对应的函数,利用函数的性质分析其单调性,对选项作出判断.6.【2017课标1,文21】已知函数=ex(ex﹣a)﹣a2x.(1)讨论的单调性;(2)若,求a的取值范围.【答案】(1)当,在单调递增;当,在单调递减,在单调递增;当,在单调递减,在单调递增;(2).【解析】试题分析:(1)分,,分别讨论函数的单调性;(2)分,,分别解,从而确定a的取值范围.试题解析:(1)函数的定义域为,,①若,则,在单调递增.②若,则由得.当时,;当时,,所以在单调递减,在单调递增.③若,则由得.当时,;当时,,故在单调递减,在单调递增.(2)①若,则,所以.②若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时,.③若,则由(1)得,当时,取得最小值,最小值为.从而当且仅当,即时.综上,的取值范围为.【考点】导数应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出,有的正负,得出函数的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数极值或最值.7.【2017课标II,文21】设函数.(1)讨论的单调性;(2)当时,,求的取值范围.【答案】(Ⅰ)在和单调递减,在单调递增(Ⅱ).试题解析:(1)令得当时,;当时,;当时,所以在和单调递减,在单调递增(2)当a≥1时,设函数h(x)=(1-x)ex,h'(x)=-xex<0(x>0),因此h(x)在[0,+∞)单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1当0<a<1时,设函数g(x)=ex-x-1,g'(x)=ex-1>0(x>0),所以g(x)在在[0,+∞)单调递增,而g(0)=0,故ex≥x+1当0<x<1,,,取则当时,取综上,a的取值范围[1,+∞)【考点】利用导数求函数单调区间,利用导数研究不等式恒成立【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.8.【2017课标3,文21】已知函数=lnx+ax2+(2a+1)x.(1)讨论的单调性;(2)当a﹤0时,证明.【答案】(1)当时,在单调递增;当时,则在单调递增,在单调递减;(2)详见解析试题解析:(1),当时,,则在单调递增,当时,则在单调递增,在单调递减.(2)由(1)知,当时,,,令(),则,解得,∴在单调递增,在单调递减,∴,∴,即,∴.【考点】利用导数求单调性,利用导数证不等式【名师点睛】利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.9.【2017天津,文19】设,.已知函数,.(Ⅰ)求的单调区间;(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,(i)求证:在处的导数等于0;(ii)若关于x的不等式在区间上恒成立,求b的取值范围.【答案】(Ⅰ)递增区间为,,递减区间为.(2)(ⅰ)在处的导数等于0.(ⅱ)的取值范围是.【解析】在上恒成立,得,,再根据导数求函数的取值范围.试题解析:(I)由,可得,令,解得,或.由,得.当变化时,,的变化情况如下表:
所以,的单调递增区间为,,单调递减区间为.(II)(i)因为,由题意知,所以,解得.所以,在处的导数等于0.(ii)因为,,由,可得.又因为,,故为的极大值点,由(I)知.另一方面,由于,故,由(I)知在内单调递增,在内单调递减,故当时,在上恒成立,从而在上恒成立.由,得,.令,,所以,令,解得(舍去),或.因为,,,故的值域为.所以,的取值范围是.【考点】1.导数的几何意义;2.导数求函数的单调区间;3.导数的综合应用.【名师点睛】本题本题考点为导数的应用,本题属于中等问题,第一问求导后要会分解因式,并且根据条件能判断两个极值点的大小关系,避免讨论,第二问导数的几何意义,要注意切点是公共点,切点处的导数相等的条件,前两问比较容易入手,但第三问,需分析出,同时根据单调性判断函数的最值,涉及造函数解题较难,这一问思维巧妙,有选拔优秀学生的功能.10.【2014山东.文20】(本题满分13分)设函数(1)若,求曲线处的切线方程;(2)讨论函数的单调性.【答案】(1).(2)当时,函数在上单调递增;当时,函数在上单调递减;当时,在,上单调递减,在上单调递增.【解析】性.其中时,情况较为单一,,函数在上单调递增,当时,令,由于,再分,,等情况加以讨论.试题解析:(1)由题意知时,,此时,可得,又,所以曲线在处的切线方程为.(2)函数的定义域为,,当时,,函数在上单调递增,当时,令,由于,① 当时,,,函数在上单调递减,② 当时,,,函数在上单调递减,③ 当时,,设是函数的两个零点,则,,由,所以时,,函数单调递减,时,,函数单调递增,时,,函数单调递减,综上可知,当时,函数在上单调递增;当时,函数在上单调递减;当时,在,上单调递减,在上单调递增.考点:导数的几何意义,应用导数研究函数的单调性,分类讨论思想.【名师点睛】本题考查导数的几何意义、应用导数研究函数的单调性等.解答本题的主要困难是(II)利用分类讨论思想,结合函数零点,确定函数的单调性.本题是一道能力题,属于难题.在考查导数的几何意义、应用导数研究函数的单调性等基础知识、基本方法的同时,考查考生的计算能力、应用数学知识分析问题解决问题的能力,考查转化与化归思想及分类讨论思想.11.[2016高考新课标Ⅲ文数]设函数.(I)讨论的单调性;(II)证明当时,;(III)设,证明当时,.【答案】(Ⅰ)当时,单调递增;当时,单调递减;(Ⅱ)见解析;(Ⅲ)见解析.试题解析:(Ⅰ)由题设,的定义域为,,令,解得.当时,,单调递增;当时,,单调递减.………4分(Ⅱ)由(Ⅰ)知,在处取得最大值,最大值为,所以当时,,故当时,,,即.………………7分(Ⅲ)由题设,设,则.令,解得.当时,,单调递增;当时,,单调递减.……………9分由(Ⅱ)知,,故.又,故当时,,所以当时,.………………12分考点:1、利用导数研究函数的单调性;2、不等式的证明与解法.【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明.12.【2016高考天津文数】((本小题满分14分)设函数,,其中(Ⅰ)求的单调区间;(Ⅱ)若存在极值点,且,其中,求证:;(Ⅲ)设,函数,求证:在区间上的最大值不小于.【答案】(Ⅰ)递减区间为,递增区间为,.(Ⅱ)详见解析(Ⅲ)详见解析【解析】,②当时,,③当时,.试题解析:(1)解:由,可得,下面分两种情况讨论:①当时,有恒成立,所以的单调增区间为.②当时,令,解得或.当变化时,、的变化情况如下表:
0
单调递增 极大值 单调递减 极小值 单调递增所以的单调递减区间为,单调递增区间为,.(2)证明:因为存在极值点,所以由(1)知且.由题意得,即,进而,又,且,由题意及(1)知,存在唯一实数满足,且,因此,所以.(3)证明:设在区间上的最大值为,表示,两数的最大值,下面分三种情况讨论:①当时,,由(1)知在区间上单调递减,所以在区间上的取值范围为,因此,所以.②当时,,由(1)和(2)知,,所以在区间上的取值范围为,所以.③当时,,由(1)和(2)知,,,所以在区间上的取值范围为,因此,.综上所述,当时,在区间上的最大值不小于.考点:导数的运算,利用导数研究函数的性质、证明不等式【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数f(x)的定义域(定义域优先);(2)求导函数f′(x);(3)在函数f(x)的定义域内求不等式f′(x)>0或f′(x)<0的解集.(4)由f′(x)>0(f′(x)<0)的解集确定函数f(x)的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f(x)在(a,b)上的单调性,求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,要注意"="是否可以取到.13.【2016高考四川文科】(本小题满分14分)设函数,,其中,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定的所有可能取值,使得在区间(1,+∞)内恒成立.【答案】(1)当时,<0,单调递减;当时,>0,单调递增;(2)证明详见解析;(3).(Ⅰ)的结论,缩小的范围,设=,并设=,通过研究的单调性得时,,从而,这样得出不合题意,又时,的极小值点,且,也不合题意,从而,此时考虑得,得此时单调递增,从而有,得出结论.试题解析:(I)<0,在内单调递减.由=0,有.当时,<0,单调递减;当时,>0,单调递增.(II)令=,则=.当时,>0,所以,从而=>0.(iii)由(II),当时,>0.当,时,=.故当>在区间内恒成立时,必有.当时,>1.由(I)有,从而,所以此时>在区间内不恒成立.当时,令=().当时,=.因此在区间单调递增.又因为=0,所以当时,=>0,即>恒成立.综上,.考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明函数不等式,一般证明的最小值大于0,为此要研究函数的单调性.本题中注意由于函数有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.14.【2015高考福建,文22】已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)证明:当时,;(Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有.【答案】(Ⅰ);(Ⅱ)详见解析;(Ⅲ).(II)令,.则有.当时,,所以在上单调递减,故当时,,即当时,.(III)由(II)知,当时,不存在满足题意.当时,对于,有,则,从而不存在满足题意.当时,令,,则有.由得,.解得,.当时,,故在内单调递增.从而当时,,即,综上,的取值范围是.【考点定位】导数的综合应用.【名师点睛】利用导数判断或求函数的单调区间,通过不等式或求解,但是要兼顾定义域;利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意与不等价,只是的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。