资源资源简介:
免费2017年浙江省中考数学真题分类解析汇编专题:三角形2017年浙江中考真题分类汇编(数学)三角形一、单选题(共4题;共8分)1、(2017·金华)下列各组数中,不可能成为一个三角形三边长的是()A、2,3,4B、5,7,7C、5,6,12D、6,8,102、(2017·台州)如图,已知△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()21*cnjy*comA、AE=ECB、AE=BEC、∠EBC=∠BACD、∠EBC=∠ABE3、(2017o杭州)如图,在△ABC中,点D,E分别在边AB,AC上,DE//BC,若BD=2AD,则()【出处:21教育名师】A、B、C、D、4、(2017o杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()【版权所有:21教育】A、x﹣y2=3B、2x﹣y2=9C、3x﹣y2=15D、4x﹣y2=21二、填空题(共4题;共5分)5、(2017·衢州)如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是________;翻滚2017次后AB中点M经过的路径长为________.21教育名师原创作品6、(2017o绍兴)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是________.21·世纪*教育网7、一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)21*cnjy*com8、(2017o杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于________.三、解答题(共5题;共53分)9、(2017·衢州)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。类比研究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。21教育网10、(2017o绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=________°,β=________°.②求α,β之间的关系式.________(2)是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.【来源:21cnj*y.co*m】11、(2017·台州)如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径2·1·c·n·j·y(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求的值12、(2017o杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.www.21-cn-jyvvvvv(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.13、(2017o温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.21·cn·jy·com(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.答案解析部分一、单选题1、【答案】C【考点】三角形三边关系【解析】【解答】解:A.2+3>4,故能组成三角形;B.5+7>7,故能组成三角形;C.5+6<12,故不能组成三角形;D.6+8>10,故能组成三角形;故答案为C。【分析】根据三角形的三边关系:三角形任意两边的和大于第三边,对各个选项进行逐一分析判断,即可得出答案。21世纪教育网版权所有2、【答案】C【考点】三角形的外角性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∴∠ABC=∠C,又∵BE=BC,∴∠BEC=∠C,∴∠ABC=∠BEC,又∵∠BEC=∠A+∠ABE,∠ABC=∠ABE+∠EBC,∴∠A=∠EBC,故答案选C.【分析】根据AB=AC,BE=BC,可以得出∠ABC=∠C,∠BEC=∠C,从而得出∠ABC=∠BEC,∠A=∠EBC,可得出正确答案。【来源:21·世纪·教育·网】3、【答案】B【考点】相似三角形的判定与性质【解析】【解答】解:∵DE//BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.21cnjyvvvvv4、【答案】B【考点】线段垂直平分线的性质,等腰三角形的性质,勾股定理,锐角三角函数的定义【解析】【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.www-2-1-cnjy-com二、填空题5、【答案】(5,);π【考点】弧长的计算,图形的旋转【解析】【解答】解:(1)∵正△ABO的边长为2,第一次翻滚之后为△OA1B1,第二次翻滚之后为△B1O1A2,第三次翻滚之后为△A2B2O2,作BD⊥x轴,∴D为A2O2中点,∴OD=2+2+1=5,B2D=,∴B2(5,);(2)∵M为AB中点∴M经过的路径是第一次翻滚是以O为圆心,OM长为半径,圆心角为120°的扇形;第二次翻滚是以B1为圆心,B1M1长为半径,圆心角为120°的扇形;第三次翻滚是以A2为圆心,A2M2长为半径,圆心角为120°的扇形;这样三个一循环的出现。∵2017里面有672个3余1,∴M经过的路径为:672×+=【分析】(1)由题可得:第一次翻滚之后为△OA1B1,第二次翻滚之后为△B1O1A2,第三次翻滚之后为△A2B2O2,作BD⊥x轴,正△ABO的边长为2,从而得出B2坐标.(2)题可得:中点M经过的路径是第一次翻滚是以O为圆心,OM长为半径,圆心角为120°的扇形;第二次翻滚是以B1为圆心,B1M1长为半径,圆心角为120°的扇形;第三次翻滚是以A2为圆心,A2M2长为半径,圆心角为120°的扇形;这样三个一循环的出现。由于2017里面有672个3余1,∴M经过的路径为:672×+=6、【答案】x=0或x=或4≤x<4【考点】相交两圆的性质【解析】【解答】解:以MN为底边时,可作MN的垂直平分线,与OB必有一个交点P1,且MN=4,以M为圆心MN为半径画圆,以N为圆心MN为半径画圆,①如下图,当M与点O重合时,即x=0时,除了P1,当MN=MP,即为P3;当NP=MN时,即为P2;只有3个点P;②当0<x<4时,如下图,圆N与OB相切时,NP2=MN=4,且NP2⊥OB,此时MP3=4,则OM=ON-MN=NP2-4=.③因为MN=4,所以当x>0时,MN<ON,则MN=NP不存在,除了P1外,当MP=MN=4时,过点M作MD⊥OB于D,当OM=MP=4时,圆M与OB刚好交OB两点P2和P3;当MD=MN=4时,圆M与OB只有一个交点,此时OM=MD=4,故4≤x<4.与OB有两个交点P2和P3,故答案为x=0或x=或4≤x<4.【分析】以M,N,P三点为等腰三角形的三顶点,则可得有MP=MN=4,NP=MN=4,PM=PN这三种情况,而PM=PN这一种情况始终存在;当MP=MN时可作以M为圆心MN为半径的圆,查看与OB的交点的个数;以N为圆心MN为半径的圆,查看与OB的交点的个数;则可分为当x=0时,符合条件;当0<x<4时,圆M与OB只有一个交点,则当圆N与OB相切时,圆N与OB只有一个交点,符合,求出此时的x值即可;当4≤x时,圆N与OB没有交点,当x的值变大时,圆M会与OB相切,此时只有一个相点,求出此时x的值,则x在这个范围内圆M与OB有两个交点;综上即可求答案.7、【答案】12-18cm【考点】旋转的性质【解析】【解答】如图2和图3,在∠CGF从0°到60°的变化过程中,点H先向AB方向移,在往BA方向移,直到H与F重合(下面证明此时∠CGF=60度),此时BH的值最大,如图3,当F与H重合时,连接CF,因为BG=CG=GF,所以∠BFC=90度,∵∠B=30度,∴∠BFC=60度,由CG=GF可得∠CGF=60度.∵BC=12cm,所以BF=BC=6如图2,当GH⊥DF时,GH有最小值,则BH有最小值,且GF//AB,连接DG,交AB于点K,则DG⊥AB,∵DG=FG,∴∠DGH=45度,则KG=KH=GH=×(×6)=3BK=KG=3则BH=BK+KH=3+3则点H运动的总路程为6-(3+3)+[12(-1)-(3+3)]=12-18(cm)故答案为:12-18cm.【分析】当GH⊥DF时,BH的值最小,即点H先从BH=12(-1)cm,开始向AB方向移动到最小的BH的值,再往BA方向移动到与F重合,求出BH的最大值,则点H运动的总路程为:BH的最大值-BH的最小值+[12(-1)-BH的最小值].2-1-c-n-j-y8、【答案】78【考点】三角形的面积,勾股定理,相似三角形的判定与性质【解析】【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,∴△ABC的面积=ABoAC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.三、解答题9、【答案】(1)△ABD≌△BCE≌△CAF.证明:∵正△ABC中,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC-∠2,∠BCE=∠ACB-∠3,又∠2=∠3∴∠ABD=∠BCE,又∵∠1=∠2,∴△ABD≌△BCE(ASA).(2)△DEF是正三角形.证明:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形.(3)解:作AG⊥BD,交BD延长线于点G.由△DEF是正三角形得到∠ADG=60°(或者∠ADG=∠1+∠ABD=∠2+∠ABD=60°.)∴在Rt△ADG中,DG=b,AG=b.∴在Rt△ABG中,c2=+,∴c2=a2+ab+b2【考点】全等三角形的判定,等边三角形的判定与性质,含30度角的直角三角形,勾股定理【解析】【分析】(1)由正△AB得出∠CAB=∠ABC=∠BCA=60°,AB=BC,再通过等量代换得出∠1=∠2,从而得出△ABD≌△BCE(ASA).(2)由(1)中△ABD≌△BCE≌△CAF,得出∠ADB=∠BEC=∠CFA,∠FDE=∠DEF=∠EFD,从而得出△DEF是正三角形.(3)作AG⊥BD,交BD延长线于点G.由△DEF是正三角形得到∠ADG=60°(或者∠ADG=∠1+∠ABD=∠2+∠ABD=60°.)从而在Rt△ADG中,DG=b,AG=b;在Rt△ABG中,c2=+,最后得出c2=a2+ab+b210、【答案】(1)20;10;α=2β(2)解:如图,点E在CA延长线上,点D在线段BC上,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△ABD中,x+α=β-y,在△DEC中,x+y+β=180°,所以α=2β-180°.注:求出其它关系式,相应给分,如点E在CA的延长线上,点D在CB的延长线上,可得α=180°-2β.【考点】三角形的外角性质【解析】【解答】解:(1)①因为AD=AE,所以∠AED=∠ADE=70°,∠DAE=40°,又因为AB=AC,∠ABC=60°,所以∠BAC=∠C=∠ABC=60°,所以α=∠BAC-∠DAE=60°-40°=20°,β=∠AED-∠C=70°-60°=10°;②解:如图,设∠ABC=x,∠ADE=y,则∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β,所以α=2β.【分析】(1)①在△ADE中,由AD=AE,∠ADE=70°,不难求出∠AED和∠DAE;由AB=AC,∠ABC=60°,可得∠BAC=∠C=∠ABC=60°,则α=∠BAC-∠DAE,再根据三角形外角的性质可得β=∠AED-∠C;②求解时可借助设未知数的方法,然后再把未知数消去的方法,可设∠ABC=x,∠ADE=y;(2)有很多种不同的情况,做法与(1)中的②类似,可求这种情况:点E在CA延长线上,点D在线段BC上.11、【答案】(1)证明:∵△ABC是等腰直角三角形,∴∠C=∠ABC=45°,∴∠PEA=∠ABC=45°又∵PE是⊙O的直径,∴∠PAE=90°,∴∠PEA=∠APE=45°,∴△APE是等腰直角三角形.(2)解:∵△ABC是等腰直角三角形,∴AC=AB,同理AP=AE,又∵∠CAB=∠PAE=90°,∴∠CAP=∠BAE,∴△CPA≌△BAE,∴CP=BE,在Rt△BPE中,∠PBE=90°,PE=2,∴PB2+BE2=PE2,∴CP2+PB2=PE2=4.【考点】全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理,圆心角、弧、弦的关系,等腰直角三角形【解析】【分析】(1)根据等腰直角三角形性质得出∠C=∠ABC=∠PEA=45°,再由PE是⊙O的直径,得出∠PAE=90°,∠PEA=∠APE=45°,从而得证.(2)根据题意可知,AC=AB,AP=AE,再证△CPA≌△BAE,得出CP=BE,依勾股定理即可得证.12、【答案】(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC(2)解:由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【考点】相似三角形的判定与性质【解析】【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.13、【答案】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【考点】全等三角形的判定与性质【解析】【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。