资源资源简介:
免费2017届中考数学一轮复习《函数概念与平面直角坐标系》精讲精练中考数学试题分类汇编解析网考点一、平面直角坐标系内点的坐标特征【例1】若点P(a,a-2)在第四象限,则a的取值范围是()A.-2<a<0B.0<a<2C.a>2D.a<0方法总结解这类题的关键是明确各象限内点的坐标特征,总结规律,再结合规律列出不等式(组)求解.举一反三1.在平面直角坐标系中,如果mn>0,那么点(m,|n|)一定在()A.第一象限或第二象限B.第一象限或第三象限C.第二象限或第四象限D.第三象限或第四象限2.若点P(2k﹣1,1﹣k)在第四象限,则k的取值范围为()A.k>1 B.k< C.k> D.<k<1考点二、图形的变换与坐标【例2】如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2) B.(﹣x,y+2) C.(﹣x+2,﹣y) D.(﹣x+2,y+2)方法总结在平面直角坐标系中,图形的平移、对称、旋转等变换会引起坐标的变化,同样,坐标的变化也会引起图形的变换,两者紧密结合充分体现了数形结合的思想.举一反三1.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,2) B.(3,3) C.(4,3) D.(3,2)2.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)3.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.考点三、函数概念及其图象的应用【例3】1.下列各图能表示y是x的函数是()A. B. C. D.2.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的直线距离为s,则s关于t的函数图象大致为()方法总结1.利用函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,要看清横坐标和纵坐标表示的是哪两个变量,探求变量和函数之间的变化趋势,仔细观察图象(直线或曲线)的"走势"特点,合理地分析变化过程,准确地结合图象解决实际问题.举一反三1.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. B. C. D.2.已知函数f(x)=1+,其中f(a)表示当x=a时对应的函数值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)of(2)of(3)…f(100)=.考点四、函数自变量取值范围的确定【例4】在函数y=+(x﹣2)0中,自变量x的取值范围是.方法总结自变量的取值必须使含自变量的代数式有意义,主要体现在以下几种:①含自变量的解析式是整式:自变量的取值范围是全体实数;②含自变量的解析式是分式:自变量的取值范围是使得分母不为0的实数;③含自变量的解析式是二次根式:自变量的取值范围是使被开方式为非负的实数;④含自变量的解析式既是分式又是二次根式时:自变量的取值范围是它们的公共解,一般列不等式组求解;⑤当函数解析式表示实际问题时:自变量的取值必须使实际问题有意义.举一反三函数y=+的自变量x的取值范围是()A.x≤3 B.x≠4 C.x≥3且x≠4 D.x≤3或x≠4考点五、新定义题型【例5】在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6) B.(7,﹣6) C.(﹣7,6) D.(﹣7,﹣6)方法总结对于新定义题型主要把握好给定的定义,根据定义进行分析解题举一反三在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.一、选择题1.若点P(1﹣m,m)在第二象限,则下列关系式正确的是()A.0<m<1 B.m>0 C.m>1 D.m<02.函数y=中,自变量x的取值范围是()A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x>2二、填空题3.函数y=的自变量的取值范围是.4.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.1.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2)B.(-2,-3)C.(-2,3)D.(2,-3)2.函数中自变量x的取值范围是()A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠33.在下列各图象中,y不是x函数的是()A. B. C. D.4.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A. B. C. D.5.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.6.已知点A(m,2m)和点B(3,m2﹣3),直线AB平行于x轴,则m等于()A.﹣1 B.1 C.﹣1或3 D.37.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0 B.﹣3×()2013 C.(2)2014 D.3×()20138.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中"→"方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.9.小在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为.10.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]=.11.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.12.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.答案【例1】B解析:第四象限点的横坐标大于0,纵坐标小于0,结合点的坐标特征构造不等式组a>0,a-2<0.解这个不等式组得0<a<2,故选B..举一反三1.A2.解:由题意得:,解得,∴k>1.故选A.【例2】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选:B.举一反三1.解:如图,作AM⊥x轴于点M.∵正三角形OAB的顶点B的坐标为(2,0),∴OA=OB=2,∠AOB=60°,∴OM=OA=1,AM=OM=,∴A(1,),∴直线OA的解析式为y=x,∴当x=3时,y=3,∴A′(3,3),∴将点A向右平移2个单位,再向上平移2个单位后可得A′,∴将点B(2,0)向右平移2个单位,再向上平移2个单位后可得B′,∴点B′的坐标为(4,2),故选A.2.解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.3.解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【例3】1.D2.解:本题是典型的数形结合问题,通过对图形的观察,可以看出s与t的函数图象应分为三段:(1)当蚂蚁从点O到点A时,s与t成正比例函数关系;(2)当蚂蚁从点A到点B时,s不变;(3)当蚂蚁从点B回到点O时,s与t成一次函数关系,且回到点O时,s为零.举一反三1.解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,2.5151解:f(1)of(2)of(3)…f(100)=×××…×××==5151.故答案为5151.【例4】x>﹣2且x≠2解:由题意得,x+2>0且x﹣2≠0,解得x>﹣2且x≠2.故答案为:x>﹣2且x≠2.举一反三解:要使函数y=+有意义,则所以x≤3,即函数y=+的自变量x的取值范围是:x≤3.故选:A.考点五、新定义题型【例5】解:∵f(﹣6,7)=(7,﹣6),∴g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.举一反三解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).一、选择题1.C2.C二、填空题1.x≥3或x<22.解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).1.D2.A3.C4.B5.B解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,6.A解:∵直线AB平行于x轴,∴点A的纵坐标与B的纵坐标相等,∴2m=m2﹣3,即m2﹣2m﹣3=0,∴(m﹣3)(m+1)=0,∴m﹣3=0或m+1=0,∴m=3或m=﹣1.∵A、B是两个点,才能连线平行X轴,∴m≠3,∴m=﹣1故选A.7.D解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为:3×()2013.8.45解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2012个点是(45,13),所以,第2012个点的横坐标为45.9.解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A2014的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点An均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:(﹣3,1),(0,4);﹣1<a<1且0<b<2.10.(3,2)11.(8052,0)解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点,∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0).故答案为:(8052,0).12.解:(1)∵A(2,4)、B(﹣3,﹣8),∴|AB|==13,即A、B两点间的距离是13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,∴|AB|=|﹣1﹣5|=6,即A、B两点间的距离是6;(3)∵一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),∴AB=5,BC=6,AC=5,∴AB=AC,∴△ABC是等腰三角形.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。