资源资源简介:
免费2017年枣庄市中考数学专题《圆》复习题含答案中考数学要点分类汇编网2017年山东枣庄13 中学中考数学专题《圆》复习题(含答案)一.选择题(共10小题,共40分)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2 B.4 C.4 D.82.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )A.4 B.6 C.2 D.8第1题 第2题 第3题3.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是( )A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠BOD4.如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?( ) A.6 B.12 C.15 D.30第4题 第6题5.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( )A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定6.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( ) A.80° B.90° C.100° D.无法确定7.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为( ) A.50° B.80° C.100° D.130°第7题 第8题 第9题8.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是( )A.55° B.60° C.65° D.70°9.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )A.25° B.50° C.60° D.30°10.如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论: ①AD=DC;②AB=BD;③AB=BC;④BD=CD, 其中正确的个数为( ) A.4个 B.3个 C.2个 D.1个 二.填空题(共4小题,共24分) 11.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 . 第11题 第12题 第13题12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是 . 13.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是 .14.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是____________ 三.解答题 15.求证:BE=CE; (2)试判断四边形BFCD的形状,并说明理由; (3)若BC=8,AD=10,求CD的长. 16.当AC=2时,求⊙O的半径; (2)设AC=x,⊙O的半径为y,求y与x的函数关系式. 17.如图,AB是⊙O的直径, =,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C. (1)若OA=CD=2,求阴影部分的面积; (2)求证:DE=DM. 18.如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=. (1)求⊙O的半径OD; (2)求证:AE是⊙O的切线; (3)求图中两部分阴影面积的和. 答案:1.C 2.A 3.B 4.A 5.A 6.B 7.D 8.C 9.A 10.B 11.6 12. 3<r<5 13. 4π 14.3﹣π 15.(1)证明:∵AD是直径, ∴∠ABD=∠ACD=90°, 在Rt△ABD和Rt△ACD中, , ∴Rt△ABD≌Rt△ACD, ∴∠BAD=∠CAD, ∵AB=AC, ∴BE=CE; (2)四边形BFCD是菱形. 证明:∵AD是直径,AB=AC, ∴AD⊥BC,BE=CE, ∵CF∥BD, ∴∠FCE=∠DBE, 在△BED和△CEF中 , ∴△BED≌△CEF, ∴CF=BD, ∴四边形BFCD是平行四边形, ∵∠BAD=∠CAD, ∴BD=CD, ∴四边形BFCD是菱形; (3)解:∵AD是直径,AD⊥BC,BE=CE, ∴CE2=DEAE, 设DE=x, ∵BC=8,AD=10, ∴42=x(10﹣x), 解得:x=2或x=8(舍去) 在Rt△CED中, CD===2. 16.解:(1)连接OE,OD, 在△ABC中,∠C=90°,AC+BC=8, ∵AC=2, ∴BC=6; ∵以O为圆心的⊙O分别与AC,BC相切于点D,E, ∴四边形OECD是正方形, tan∠B=tan∠AOD===,解得OD=, ∴圆的半径为; (2)∵AC=x,BC=8﹣x, 在直角三角形ABC中,tanB==, ∵以O为圆心的⊙O分别与AC,BC相切于点D,E, ∴四边形OECD是正方形. tan∠AOD=tanB===, 解得y=﹣x2+x. 17.(1)解:如图,连接OD, ∵CD是⊙O切线, ∴OD⊥CD, ∵OA=CD=2,OA=OD, ∴OD=CD=2, ∴△OCD为等腰直角三角形, ∴∠DOC=∠C=45°, ∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π; (2)证明:如图,连接AD, ∵AB是⊙O直径, ∴∠ADB=∠ADM=90°, 又∵=, ∴ED=BD,∠MAD=∠BAD, 在△AMD和△ABD中, , ∴△AMD≌△ABD, ∴DM=BD, ∴DE=DM. 18.解:(1)∵AB与圆O相切, ∴OD⊥AB, 在Rt△BDO中,BD=2,tan∠BOD==, ∴OD=3; (2)连接OE, ∵AE=OD=3,AE∥OD, ∴四边形AEOD为平行四边形, ∴AD∥EO, ∵DA⊥AE, ∴OE⊥AC, 又∵OE为圆的半径, ∴AE为圆O的切线; (3)∵OD∥AC, ∴=,即=, ∴AC=7.5
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。