资源资源简介:
免费2017年苏教版中考数学最后冲刺浓缩精华卷(6)含考点分类汇编详解一、 单选题(本大题共8个小题,每小题3分,共24分)1.﹣3的相反数是()A.﹣3B.C.3D.﹣【答案】C.【解析】试题分析:﹣3的相反数是3.故选:C.2.下列几何体中,主视图是矩形的是()$来&源:ziyuankuvvvvv【答案】B.【解析】3.中国倡导的"一带一路"建设将促进我国与世界各国的互利合作,根据规划,"一带一路"地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【答案】B【解析】试题分析:4400000000=4.4×109,故选:B.4.下列运算中,正确的是()A.2x+2y=2xyB.(x2y3)2=x4y5C.(xy)2÷=(xy)3D.2xy﹣3yx=xy【答案】C.【解析】试题分析:A、2x+2y无法计算,故此选项错误;B、(x2y3)2=x4y6,故此选项错误;C、此选项正确;D、2xy﹣3yx=﹣xy,故此选项错误;故选:C.5.如图,已知∠AOB=40°,在∠AOB的两边OA、OB上分别存在点Q、点P,过点Q作直线QR∥OB,当OP=QP时,∠PQR的度数是().A.60°B.80°C.100°D.120°【答案】C.【解析】6.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50B.50和40C.40和50D.40和40【答案】A【解析】试题分析:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.7.如图9四边形ABCD是菱形,且,是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转得到BN,连接EN、AM、CM,则下列五个结论中正确的是()①若菱形ABCD的边长为1,则的最小值1;②;③;④连接AN,则;⑤当的最小值为时,菱形ABCD的边长为2.A.①②③ B.②④⑤ C.①②⑤ D.②③⑤【答案】C【解析】解答:解:①连接AC,交BD于点O,∵四边形ABCD是菱形,∴AB=BC,BD⊥AC,AO=BO∴点A,点C关于直线BD对称,∴M点与O点重合时AM+CM的值最小为AC的值∵∠ABC=60,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS),故本答案正确.③∵S△ABE+S△ABM=S四边形AMBES△ACD+S△AMC=S四边形ADCM,且S△AMB≠S△AMC,∴S△ABE+S△ABM≠S△ACD+S△AMC,∴S四边形AMBE≠S四边形ADCM,故本答案错误.④假设AN⊥BE,且AE=AB,∴AN是BE的垂直平分线,∴EN=BN=BM=MN,∴M点与O点重合,∵条件没有确定M点与O点重合,故本答案错误.⑤如图,连接MN,由(1)知,△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.(10分)根据"两点之间线段最短",得EN+MN+CM=EC最短8.已知二次函数y=,设自变量的值分别为x1,x2,x3,且-3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1【答案】A【解析】中/华-资*源%库试题分析:对于开口向下的二次函数,在对称轴的右侧为减函数.二、填空题(本大题共8个小题,每小题3分,共24分)9.分解因式:_________.【答案】3(x+y)(x-y)【解析】==,故答案为:.10.计算:+=___.【答案】311.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为____________.【答案】【解析】DE∥BC即12.当k__时,方程x2﹣6x+k=0有两个不相等的实数根.【答案】k<9【解析】试题解析:∵方程x2-6x+k=0有两个不相等的实数根,∴△=b2-4ac=(-6)2-4×1×k>0,解得k<9.13.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【答案】【解析】14.如图,在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与边BC相切,则∠BAC的度数是_______度.【答案】105【解析】试题解析:设圆A与BC切于点D,连接AD,则AD⊥BC,在直角△ABD中,AB=2,AD=1,则sinB=,∴∠B=30°,∴∠BAD=60°,同理,在直角△ACD中,sinC=,∴∠C=45°,∴∠CAD=45°,∴∠BAC=∠BAD+∠CAD=60°+45°=105°.15.如图,在直角坐标系中,矩形OABC的顶点A在x轴上,顶点C在y轴上,B(4,3),连接OB,将△OAB沿直线OB翻折,得△ODB,OD与BC相交于点E,若双曲线经过点E,则k=_____;【答案】16.如图,等边三角形放在平面直角坐标系中,其中点为坐标原点,点的坐标为(,),点位于第二象限.已知点、点同时从坐标原点出发,点以每秒个单位长度的速度沿来回运动一次,点以每秒个单位长度的速度从往运动,当点到达点时,、两点都停止运动.在点、点的运动过程中,存在某个时刻,使得、两点与点或点构成的三角形为直角三角形,那么点的坐标为__________.【答案】(,)、(,)、(,)、(,)【解析】解:因为等边三角形放在平面直角坐标系中,点的坐标为(,),点位于第二象限就,其为(-4,4),那么根据点的坐标,以及它们两个点运行的速度比为4:1,可知,使得、两点与点或点构成的三角形为直角三角形的情况共有4种,并且此时点P的坐标为(,)、(,)、(,)、(,)三、 解答题(本大题72分)17.计算:.【答案】18.解不等式≤1,并把它的解集在数轴上表示出来.【答案】x≥-1,数轴表示见解析.19."地球一小时(EarthHour)"是世界自然基金会(WWF)应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30﹣21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以"地球一小时﹣﹣你怎么看?"为主题对公众进行了调查,主要有4种态度A:了解、赞成并支持B:了解,忘了关灯C:不了解,无所谓D:纯粹是作秀,不支持,请根据图中的信息回答下列问题:(1)这次抽样的公众有人;(2)请将条形统计图补充完整;(3)在扇形统计图中,"不了解,无所谓"部分所对应的圆心角是162度;(4)若城区人口有300万人,估计赞成并支持"地球一小时"的有45万人.并根据统计信息,谈谈自己的感想.【答案】(1)1000;中/华-资*源%库(2)100人;图见试题解析.(3)162°;(4)45万.1000;162;45万.【解析】试题分析:(1)根据题意可得:B类的有300人,占30%;即可求得总人数;(2)进而可求得D类的人数,据此可补全条形图;(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,可求得"不了解,无所谓"部分所对应的圆心角度数;(4)用样本估计总体,可估计赞成的人数.试题解析:(1)300÷30%=1000人.故这次抽样的公众有1000人;(2)1000﹣150﹣300﹣450=100人,作图为:(3)×360°=162°.故"不了解,无所谓"部分所对应的圆心角是162度;20.为弘扬中华传统文化,黔南州近期举办了中小学生"国学经典大赛".比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分"单人组"和"双人组".(1)小丽参加"单人组",她从中随机抽取一个比赛项目,恰好抽中"三字经"的概率是多少?(2)小红和小明组成一个小组参加"双人组"比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中"唐诗"且小明抽中"宋词"的概率是多少?请用画树状图或;列表的方法进行说明.【答案】(1);(2).【解析】试题分析:(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中"唐诗"且小明抽中"宋词"的结果数,然后根据概率公式求解.试题解析:(1)她从中随机抽取一个比赛项目,恰好抽中"三字经"的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中"唐诗"且小明抽中"宋词"的结果数为1,所以恰好小红抽中"唐诗"且小明抽中"宋词"的概率=.21.如图,在□ABCD中,M,N在对角线AC上,且AM=CN,求证:BM∥DN.【答案】证明见解析即OM=ON,∴四边形BNDM是平行四边形.∴BM∥DN.22.如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)【答案】48.8【解析】CD=DN+NC=DN+MA+AE=10+15+15+1.5≈17.32+31.5≈48.8(m).23.如图,以点O为圆心,AB长为直径作圆,在⊙O上取一点C,延长AB至点D,连接DC,过点A作⊙O的切线交DC的延长线于点E,且∠DCB=∠DAC.(1)求证:CD是⊙O的切线;(2)若AD=6,tan∠DCB=,求AE的长.【答案】(1)证明见解析;(2)AE的长为24.某网站店主购进A、B两种型号的装饰链,其中A型装饰链的进货单价比B型装饰链的进货单价多20元,花500元购进A型装饰链的数量与花400元购进B型装饰链的数量相等。销售中发现A型装饰链的每月销售量y1(个)与销售单价x(元)之间满足的函数关系式为y1=-x+200;B型装饰链的每月销售量y2(个)与销售单价x(元)满足的关系式为y2=-x+140(1)求A、B两种型号装饰链的进货单价.(2)已知每个A型装饰链的销售单价比B型装饰链的销售单价高20元.求A、B两种型号装饰链的销售单价各为多少元时,每月销售这两种装饰链的总利润最大,最大总利润是多少?【答案】(1)A:100元;B:80元;(2)A:140元,B:120元时,W最大=3200当m=120时,W有最大值,W最大=3200.此时m+20=140答:当A型装饰链的销售单价140元,B型装饰链的销售单价120元时,每月销售这两种装饰链的总利润最大,最大总利润是3200元.25.如图(1),四边形ABCD中,将顶点为A的角绕着顶点A顺时针旋转,角的一条边与DC的延长线交于点F,角的另一条边与CB的延长线交于点E,连接EF(1)若四边形ABCD为正方形,当∠EAF=45°时,有EF=DF-BE,请证明这个结论.(2)如图(2),如果在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论);(3)如图(3),如果四边形ABCD中,AB=AD,∠ABC与∠ADC互补,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式并给予证明;(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周长(直接写出结果即可)。【答案】(1)证明见解析;(2)EF=DF-BE;(3)EF=DF-BE;(4)15.【解析】(1)(2)(3)的解题思路一致,都是通过两步全等来实现;在DF上截取DM=BE,第一步,首先证△ADM≌△ABE,得AE=AM;第二步,证△AMF≌△AEF,得EF=FM,由此得到DF、EF、BE的数量关系.(4)根据前三问的结论知:EF=DF-BE,那么△CEF的周长可转化为:EF+BE+BC+FC=DF+BC+FC,即可得解.(1)证明:在DF上截取DM=BE;得EF=FM,∵DF=DM+FM,∴DF=BE+EF,即EF=DF-BE;(2)EF=DF-BE;证明方法同(1)WWW.ziyuankuvvvvv(3)EF=DF-BE;证明:在DF上截取DM=BE,∵∠D+∠ABC=∠ABE+∠ABC=180°,∴∠D=∠ABE,∴AD=AB,∴△ADM≌△ABE,∴AM=AE,∠DAM=∠BAE;∵∠EAF=∠BAE+∠BAF=∠BAD,∴∠DAM+∠BAF=∠BAD,26.如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.【答案】(1)3,﹣1≤x≤1;(2)a=﹣1,四边形ENFM是矩形;(3)当△AMN为等腰三角形时,方程﹣aWWW.ziyuankuvvvvv(x+1)2=0的解为x1=﹣1,x2=﹣1﹣或x1=2,x2=﹣4.【解析】试题分析:(1)把二次函数L1:y=ax2﹣2ax+a+3化成顶点式,即可求得最小值,分别求得二次函数L1,L2的y值随着x的增大而减小的x的取值,从而求得二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围;试题解析:(1)∵二次函数L1:y=ax2﹣2ax+a+3=a(x﹣1)2+3,∴顶点M坐标为(1,3),∵a>0,∴函数y=ax2﹣2ax+a+3(a>0)的最小值为3,∵二次函数L1的对称轴为x=1,当x<1时,y随x的增大而减小;二次函数L2:y=﹣a(x+1)2+1的对称轴为x=﹣1,当x>﹣1时,y随x的增大而减小;∴当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是﹣1≤x≤1;$来&源:ziyuankuvvvvv故答案为:3,﹣1≤x≤1.(2)由二次函数L1:y=ax2﹣2ax+a+3可知E(0,a+3),由二次函数L2:y=﹣a(x+1)2+1=﹣a2x﹣2ax﹣a+1可知F(0,﹣a+1),∵M(1,3),N(﹣1,1),∴EF=MN==2,∴a+3﹣(﹣a+1)=2,∴a=﹣1,作MG⊥y轴于G,则MG=1,作NH⊥y轴于H,则NH=1,∴MG=NH=1,∵EG=a+3﹣3=a,FH=1﹣(﹣a+1)=a,∴EG=FH,在△EMG和△FNH中,,∴△EMG≌△FNH(SAS),∴∠MEF=∠NFE,EM=NF,∴EM∥NF,∴四边形ENFM是平行四边形;∵EF=MN,∴四边形ENFM是矩形;∴它与x轴的另一个交点坐标为(﹣1﹣,0).∴方程﹣a(x+1)2+1=0的解为x1=﹣1,x2=﹣1﹣.②如图3,当MA=NA时,过点M作MG⊥x轴,垂足为G,则有OG=1,MG=3,GA=|m﹣1|,∴在Rt△MGA中,MA2=MG2+GA2,即MA2=32+(m﹣1)2,又∵NA2=(m+1)2+12,∴(m+1)2+12=32+(m﹣1)2,m=2,∴A(2,0),则抛物线y=﹣a(x+1)2+1(a>0)的左交点坐标为(﹣4,0),∴方程﹣a(x+1)2+1=0的解为x1=2,x2=﹣4.中·华.资*源%库ziyuankuvvvvv
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。