资源资源简介:
免费2018届中考数学复习《反比例函数》专题提升训练中考数学答题技巧中考专题训练:反比例函数一.选择题(共15小题)1.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤ B.6≤k≤10 C.2≤k≤6 D.2≤k≤2.已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6 D.43.如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7 B.10 C.14 D.284.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A. B. C.3 D.45.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.46.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.47.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=﹣2m B.n=﹣ C.n=﹣4m D.n=﹣8.如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为()A.1 B.2 C.4 D.不能确定9.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.2810.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A. B. C. D.11.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大12.如图,在直角坐标系中,有菱形OABC,A点的坐标是(10,0),双曲线经过点C,且OBoAC=160,则k的值为()A.40 B.48 C.64 D.8013.直线y=﹣2x+5分别与x轴,y轴交于点C、D,与反比例函数的图象交于点A、B.过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,连接EF,下列结论:①AD=BC;②EF∥AB;③四边形AEFC是平行四边形;④S△AOD=S△BOC.其中正确的个数是()A.1 B.2 C.3 D.414.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,).其中正确结论的个数是()A.1 B.2 C.3 D.415.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A. B. C. D.二.填空题(共5小题)16.如图,D是反比例函数的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为.17.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为.18.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为.19.如图,在平面直角坐标系中,正方形ABCD的顶点A、B在x轴正半轴上,顶点D在反比例函数的第一象限的图象上,CA的延长线与y轴负半轴交于点E.若△ABE的面积为1.5,则k的值为.20.两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.三.解答题(共5小题)[来源:学§科§网Z§X§X§K]21.如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积.22.如图,一次函数y1=k1x+b与反比例函数的图象相交于A,B两点,且与坐标轴的交点为(﹣6,0),(0,6),点B的横坐标为﹣4.(1)试确定反比例函数的解析式;(2)求△AOB的面积;(3)直接写出不等式的解.23.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.24.已知双曲线y=(x>0),直线l1:y﹣=k(x﹣)(k<0)过定点F且与双曲线交于A,B两点,设A(x1,y1),B(x2,y2)(x1<x2),直线l2:y=﹣x+.(1)若k=﹣1,求△OAB的面积S;(2)若AB=,求k的值;(3)设N(0,2),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(x1,y1),B(x2,y2)则A,B两点间的距离为AB=)25.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.参考答案一.选择题(共15小题)[来源:学科网ZXXK]1.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤ B.6≤k≤10 C.2≤k≤6 D.2≤k≤【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A,∵过点A(1,2)的反比例函数解析式为y=,∴k≥2.随着k值的增大,反比例函数的图象必须和线段BC有交点才能满足题意,经过B(2,5),C(6,1)的直线解析式为y=﹣x+7,,得x2﹣7x+k=0根据△≥0,得k≤综上可知2≤k≤.故选:A.2.已知点A在双曲线y=﹣上,点B在直线y=x﹣4上,且A,B两点关于y轴对称.设点A的坐标为(m,n),则+的值是()A.﹣10 B.﹣8 C.6 D.4【解答】解:∵点A的坐标为(m,n),A、B两点关于y轴对称,∴B(﹣m,n),∵点A在双曲线y=﹣上,点B在直线y=x﹣4上,∴n=﹣,﹣m﹣4=n,即mn=﹣2,m+n=﹣4,∴原式===﹣10.故选:A.3.如图,过y轴上一个动点M作x轴的平行线,交双曲线于点A,交双曲线于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A.7 B.10 C.14 D.28【解答】解:设M的坐标为(0,m)(m>0),则直线AB的方程为:y=m,将y=m代入y=﹣中得:x=﹣,∴A(﹣,m),将y=m代入y=中得:x=,∴B(,m),∴DC=AB=﹣(﹣)=,过B作BN⊥x轴,则有BN=m,则平行四边形ABCD的面积S=DCoBN=om=14.故选:C.4.如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A. B. C.3 D.4【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴ADoOC=1,(﹣)ox=1,解得k=,故选:B.5.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k的值为()A.1 B.2 C.3 D.4【解答】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴===tan60°=,则=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,∴|xy|=ADoDO=×6=3,∴k=EC×EO=1,则EC×EO=2.故选:B.6.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:对于直线y1=2x﹣2,令x=0,得到y=﹣2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴S△ADB=S△ADC(同底等高三角形面积相等),选项①正确;∴C(2,2),把C坐标代入反比例解析式得:k=4,即y2=,由函数图象得:当0<x<2时,y1<y2,选项②错误;当x=3时,y1=4,y2=,即EF=4﹣=,选项③正确;当x>0时,y1随x的增大而增大,y2随x的增大而减小,选项④正确,故选:C.7.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=﹣2m B.n=﹣ C.n=﹣4m D.n=﹣【解答】解:由反比例函数的性质可知,A点和B点关于原点对称,∵点C的坐标为(m,n),∴点A的坐标为(,n),∴点B的坐标为(﹣,﹣n),根据图象可知,B点和C点的横坐标相同,∴﹣=m,即n=﹣.故选:B.8.如图,点A是反比例函数(x>0)图象上任意一点,AB⊥y轴于B,点C是x轴上的动点,则△ABC的面积为()A.1 B.2 C.4 D.不能确定【解答】解:设A的坐标是(m,n),则mn=2.则AB=m,△ABC的AB边上的高等于n.则△ABC的面积=mn=1.故选:A.9.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.28【解答】解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴=,即BC×OE=BO×AB.又∵S△BEC=8,即BC×OE=2×8=16=BO×AB=|k|.又由于反比例函数图象在第一象限,k>0.所以k等于16.故选:B.10.在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A. B. C. D.【解答】解:A、由反比例函数的图象在一、三象限可知﹣k>0,k<0,由一次函数的图象过一、二、四象限可知k<0,且k>0,两结论相矛盾,故本选项错误;B、由反比例函数的图象在二、四象限可知﹣k<0,k>0,由一次函数的图象与y轴交点在y轴的正半轴且过一、二、三象限可知k>0,两结论一致,故本选项正确;C、由反比例函数的图象在一、三象限可知﹣k>0,k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论矛盾,故本选项错误.D、由反比例函数的图象在二、四象限可知﹣k<0,k>0,由一次函数的图象过一、二、四象限可知k<0且k>,两结论相矛盾,故本选项错误;故选:B.11.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大【解答】解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=ABoAD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选:C.12.如图,在直角坐标系中,有菱形OABC,A点的坐标是(10,0),双曲线经过点C,且OBoAC=160,则k的值为()A.40 B.48 C.64 D.80【解答】解:∵四边形OABC是菱形,OB与AC为两条对角线,且OBoAC=160,∴菱形OABC的面积为80,即OAoCD=80,∵OA=OC=10,∴CD=8,在Rt△OCD中,OC=10,CD=8,根据勾股定理得:OD=6,即C(6,8),则k的值为48.故选:B.13.直线y=﹣2x+5分别与x轴,y轴交于点C、D,与反比例函数的图象交于点A、B.过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,连接EF,下列结论:①AD=BC;②EF∥AB;③四边形AEFC是平行四边形;④S△AOD=S△BOC.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:如右图所示,①∵y=﹣2x+5与相交,∴,解得或,∴A点坐标是(1,3),B点坐标是(,2),∵直线y=﹣2x+5与x轴和y轴的交点分别是(,0)、(0,5),∴C点坐标是(,0),D点坐标是(0,5),∵AE⊥y轴,BF⊥x轴,∴AE=1,DE=OD﹣OE=5﹣3=2,在Rt△ADE中,AD==,同理可求BC=,故AD=BC,故①选项正确;②∵OF:OE=1:2,OC:OD=1:2,∴EF∥AB,故②选项正确;③∵AE=CF=1,且AE∥CF,∴四边形AEFC是平行四边形,故③选项正确;④∵S△AOD=oODoAE=×5×1=2.5,S△BOC=oOCoBF=××2=2.5,∴S△AOD=S△BOC,故④选项正确.故选:D.14.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,).其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OCoNC=OAoAM,∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,所以①正确;∴ON=OM,∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,所以②错误;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,所以③正确;作NE⊥OM于E点,如图,∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM=x,∴EM=x﹣x=(﹣1)x,在Rt△NEM中,MN=2,∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2,∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a﹣,在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0,+1),所以④正确.故选:C.[来源:学科网]15.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A. B. C. D.【解答】解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故选:A.二.填空题(共5小题)16.如图,D是反比例函数的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为﹣2.【解答】解:∵的图象经过点C,∴C(0,2),将点C代入一次函数y=﹣x+m中,得m=2,∴y=﹣x+2,令y=0得x=2,∴A(2,0),∴S△AOC=×OA×OC=2,∵四边形DCAE的面积为4,∴S矩形OCDE=4﹣2=2,∴k=﹣2.故答案为:﹣2.17.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB为.【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△AOC=1,S△OBD=4,∴S△AOC:S△OBD=1:4,即OA:OB=1:2,[来源:学+科+网]则在Rt△AOB中,tan∠ABO=.故答案为:18.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为9.【解答】解:∵点D为△OAB斜边OA的中点,且点A的坐标(﹣6,4),∴点D的坐标为(﹣3,2),把(﹣3,2)代入双曲线,可得k=﹣6,即双曲线解析式为y=﹣,∵AB⊥OB,且点A的坐标(﹣6,4),∴C点的横坐标为﹣6,代入解析式y=﹣,y=1,即点C坐标为(﹣6,1),∴AC=3,[来源:Zxxk.Com]又∵OB=6,∴S△AOC=×AC×OB=9.故答案为:9.19.如图,在平面直角坐标系中,正方形ABCD的顶点A、B在x轴正半轴上,顶点D在反比例函数的第一象限的图象上,CA的延长线与y轴负半轴交于点E.若△ABE的面积为1.5,则k的值为3.【解答】解:设正方形ABCD的边长为a,A(x,0),则D(x,a),∵点D在反比例函数y=的图象上,∴k=xa,∵四边形ABCD是正方形,∴∠CAB=45°,∴∠OAE=∠CAB=45°,∴△OAE是等腰直角三角形,∴E(0,﹣x),∴S△ABE=ABoOE=ax=1.5,∴ax=3,即k=3.故答案为:3.20.两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.【解答】解:由题意可知:P2007的坐标是(Px2007,4013),又∵P2007在y=上,∴Px2007=.而Qx2007(即Px2007)在y=上,所以Qy2007===,∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣|=.故答案为:.三.解答题(共5小题)21.如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积.【解答】解:(1)由反比例函数解析式可知,m=xy=1×4=n×(﹣2),解得m=4,n=﹣2,将A(﹣2,﹣2),B(1,4)代入y=kx+b中,得,解得,∴反比例函数解析式为y=,一次函数解析式为y=2x+2;(2)由直线y=2x+2,得C(0,2),∴S△AOC=×2×2=2.22.如图,一次函数y1=k1x+b与反比例函数的图象相交于A,B两点,且与坐标轴的交点为(﹣6,0),(0,6),点B的横坐标为﹣4.(1)试确定反比例函数的解析式;(2)求△AOB的面积;(3)直接写出不等式的解.【解答】解:(1)设一次函数解析式为y=kx+b,∵一次函数与坐标轴的交点为(﹣6,0),(0,6),∴∴,∴一次函数关系式为:y=x+6,∴B(﹣4,2),∴反比例函数关系式为:;(2)∵点A与点B是反比例函数与一次函数的交点,∴可得:x+6=﹣,解得:x=﹣2或x=﹣4,∴A(﹣2,4),∴S△AOB=6×6÷2﹣6×2=6;(3)观察图象,易知的解集为:﹣4<x<﹣2.23.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【解答】解:(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|Ax|,S△BOC=×OC×|Bx|∴S△AOB=S△AOC+S△BOC=oOCo|Ax|+oOCo|Bx|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.24.已知双曲线y=(x>0),直线l1:y﹣=k(x﹣)(k<0)过定点F且与双曲线交于A,B两点,设A(x1,y1),B(x2,y2)(x1<x2),直线l2:y=﹣x+.(1)若k=﹣1,求△OAB的面积S;(2)若AB=,求k的值;(3)设N(0,2),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(x1,y1),B(x2,y2)则A,B两点间的距离为AB=)【解答】解:(1)当k=﹣1时,l1:y=﹣x+2,联立得,,化简得x2﹣2x+1=0,解得:x1=﹣1,x2=+1,设直线l1与y轴交于点C,则C(0,2).S△OAB=S△AOC﹣S△BOC=o2o(x2﹣x1)=2;(2)根据题意得:整理得:kx2+(1﹣k)x﹣1=0(k<0),∵△=[(1﹣k)]2﹣4×k×(﹣1)=2(1+k2)>0,∴x1、x2是方程的两根,∴,∴AB2=(x1﹣x2)2+(+)2=(x1﹣x2)2+()2=(x1﹣x2)2[1+()2]=,∴AB=﹣=,即=,整理得,2k2+5k+2=0,即(2k+1)(k+2)=0,解得k=﹣2或k=﹣.(3)F(,),如图:设P(x,),则M(﹣+,),则PM=x+﹣==,∵PF==,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2,由(1)知P(﹣1,+1),∴当P(﹣1,+1)时,PM+PN最小值是2.25.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠BCP=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠MON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OPosin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。