资源资源简介:
免费2018年保定市博野县中考数学模拟试卷含答案试卷分析解析2018年河北保定市博野县中考数学模拟试卷一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)已知:a×=b×1=c÷,且a、b、c都不等于0,则a、b、c中最小的数是()A.a B.b C.c D.a和c2.(2分)如图,AB∥CD,EF⊥AB于E,若∠1=60°,则∠2的度数是()A.35° B.30° C.25° D.20°3.(2分)有理数a、b在数轴上的对应的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b=0 C.a+b<0 D.a﹣b>04.(2分)不等式﹣x+2≥0的解集在数轴上表示正确的是()A. B. C. D.5.(2分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A.8颗 B.6颗 C.4颗 D.2颗6.(2分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76° B.78° C.80° D.82°7.(2分)一个几何体的三视图如图所示,这个几何体是()[来源:学*科*网][来源:学。科。网Z。X。X。K]A.棱柱 B.正方形 C.圆柱 D.圆锥8.(2分)若|a﹣4|+(b+1)2=0,那么a+b=()A.5 B.3 C.﹣3 D.59.(2分)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y= B.y= C.y= D.y=10.(2分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是()A.4 B. C. D.11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1 C.2a+b=﹣1 D.2a+b=112.(2分)如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4)S△AOE=SABCD.A.1个 B.2个 C.3个 D.4个13.(2分)若自然数n使得三个数的加法运算"n+(n+1)+(n+2)"产生进位现象,则称n为"连加进位数".例如:2不是"连加进位数",因为2+3+4=9不产生进位现象;4是"连加进位数",因为4+5+6=15产生进位现象;51是"连加进位数",因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到"连加进位数"的概率是()A.0.88 B.0.89 C.0.90 D.0.9114.(2分)已知函数y=x2﹣2mx+2016(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=﹣+m,x2=+m,x3=m﹣1,则y1、y2、y3的大小关系是()A.y1<y3<y2 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y115.(2分)如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3 B.S2<S1<S3 C.S1<S3<S2 D.S3<S2<S116.(2分)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在Y轴上,点B1、B2、B3…都在直线y=x上,则点A2016的坐标为()A.(2016,2018) B.(2016,2016) C.(2016,2016) D.(2016,2018)二、填空题(本大题共4小题,每小题3分,共12分)17.(3分)﹣的相反数是,倒数是,绝对值是.18.(3分)已知a是整数,一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数,则这个质数等于.19.(3分)线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为.20.(3分)如图,△ABC内接于⊙O,D是弧BC的中点,OD交BC于点H,且OH=DH,连接AD,过点B作BE⊥AD于点E,连接EH,BF⊥AC于M,若AC=5,EH=,则AF=.三、解答题:(本大题共6小题,共66分,解答应写出文字说明,说理过程或演算步骤)21.(8分)(1)计算:2cos45°﹣(π+1)0(2)解方程:x(2x﹣5)=4x﹣10.22.(10分)如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.[来源:Zxxk.Com]23.(10分)松山区种子培育基地用A,B,C三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%,根据试验数据绘制了下面两个不完整的统计图:(1)求C型号种子的发芽数;(2)通过计算说明,应选哪种型号的种子进行推广?(3)如果将所有已发芽的种子放在一起,从中随机取出一粒,求取到C型号发芽种子的概率.24.(12分)理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.思路二利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.25.(12分)已知二次函数y1=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m,n的值.(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.(3)直接写出y1>y2时x的取值范围.26.(14分)如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.参考答案与试题解析一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)已知:a×=b×1=c÷,且a、b、c都不等于0,则a、b、c中最小的数是()A.a B.b C.c D.a和c【解答】解:∵a×=b×1=c÷,∴a×=b×1=c×,∵1>>,∴b<c<a,[来源:学_科_网]∴a、b、c中最小的数是b.故选:B.2.(2分)如图,AB∥CD,EF⊥AB于E,若∠1=60°,则∠2的度数是()A.35° B.30° C.25° D.20°【解答】解:∵AB∥CD,[来源:学+科+网Z+X+X+K]∴∠3=∠1=60°,∵EF⊥AB,∴∠2+∠3=90°,∴∠2=90°﹣60°=30°.故选B.3.(2分)有理数a、b在数轴上的对应的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b=0 C.a+b<0 D.a﹣b>0【解答】解:∵a<﹣1,0<b<1,∴a+b<0,∴选项A不符合题意;∵a<﹣1,0<b<1,∴∴a﹣b<0∴选项B不符合题意;∵a<﹣1,0<b<1,∴a+b<0,∴选项C符合题意;∵a<﹣1,0<b<1,∴a﹣b<0,∴选项D不符合题意.故选:C.4.(2分)不等式﹣x+2≥0的解集在数轴上表示正确的是()A. B. C. D.【解答】解:移项得,﹣x≥﹣2,不等式两边都乘﹣1,改变不等号的方向得,x≤2;在数轴上表示应包括2和它左边的部分;故本题选B.5.(2分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A.8颗 B.6颗 C.4颗 D.2颗【解答】解:设原来盒中有白棋x颗,黑棋y颗.∵取得白色棋子的概率是,∴,∵再往盒中放进6颗黑色棋子,取得白色棋子的概率是,∴,联立方程组解得x=4,y=6.经检验,x=4,y=6是原方程组的解.∴原来盒中有白色棋子4颗.故选:C.6.(2分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76° B.78° C.80° D.82°【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.7.(2分)一个几何体的三视图如图所示,这个几何体是()A.棱柱 B.正方形 C.圆柱 D.圆锥【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:C.[来源:Z|xx|k.Com]8.(2分)若|a﹣4|+(b+1)2=0,那么a+b=()A.5 B.3 C.﹣3 D.5【解答】解:∵|a﹣4|+(b+1)2=0,∴a﹣4=0,b+1=0,∴a=4,b=﹣1,∴a+b=4﹣1=3,故选D.9.(2分)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y= B.y= C.y= D.y=【解答】解:作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC﹣AF=AC﹣DE=3a,在Rt△CDF中,由勾股定理得,CF2+DF2=CD2,即(3a)2+(4a)2=x2,解得:a=,∴y=S四边形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a2=x2.故选:C.10.(2分)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是()A.4 B. C. D.【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=,∴AC=2=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=1,OM=CMosin60°=,∴BM=BO+OM=1+,故选B.11.(2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a﹣b=1 C.2a+b=﹣1 D.2a+b=1【解答】解:由作法得OP为第二象限的角平分线,所以2a+b+1=0,即2a+b=﹣1.故选C.12.(2分)如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4)S△AOE=SABCD.A.1个 B.2个 C.3个 D.4个【解答】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正确;∵OG=a,BC=a,∴BC≠BC,故(2)错误;∵S△AOE=aoa=a2,SABCD=3aoa=3a2,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个.故选C.13.(2分)若自然数n使得三个数的加法运算"n+(n+1)+(n+2)"产生进位现象,则称n为"连加进位数".例如:2不是"连加进位数",因为2+3+4=9不产生进位现象;4是"连加进位数",因为4+5+6=15产生进位现象;51是"连加进位数",因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到"连加进位数"的概率是()A.0.88 B.0.89 C.0.90 D.0.91【解答】解:当n=0时,0+1=1,0+2=2,n+(n+1)+(n+2)=0+1+2=3,不是连加进位数;当n=1时,1+1=2,1+2=3,n+(n+1)+(n+2)=1+2+3=6,不是连加进位数;当n=2时,2+1=3,2+2=4,n+(n+1)+(n+2)=2+3+4=9,不是连加进位数;当n=3时,3+1=4,3+2=5,n+(n+1)+(n+2)=3+4+5=12,是连加进位数;当n=4时,4+1=5,4+2=6,n+(n+1)+(n+2)=4+5+6=15,是连加进位数;故从0,1,2,…,9这10个自然数共有连加进位数10﹣3=7个,由于10+11+12=33个位不进位,所以不算.又因为13+14+15=42,个位进了一,所以也是进位.按照规律,可知0,1,2,10,11,12,20,21,22,30,31,32不是,其他都是.所以一共有88个数是连加进位数.概率为0.88.故选A.14.(2分)已知函数y=x2﹣2mx+2016(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=﹣+m,x2=+m,x3=m﹣1,则y1、y2、y3的大小关系是()A.y1<y3<y2 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1【解答】解:y=x2﹣2mx+2016=(x﹣m)2﹣m2+2016,∴抛物线开口向上,对称轴为:直线x=m,当x>m时,y随x的增大而增大,由对称性得:x1=﹣+m与x=m+的y值相等,x3=m﹣1与x=m+1的y值相等,且,∴+m<m+1<m+,∴y2<y3<y1;故选D.15.(2分)如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3 B.S2<S1<S3 C.S1<S3<S2 D.S3<S2<S1【解答】解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC=,S弓形==,>>,∴S2<S1<S3.故选B.16.(2分)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在Y轴上,点B1、B2、B3…都在直线y=x上,则点A2016的坐标为()A.(2016,2018) B.(2016,2016) C.(2016,2016) D.(2016,2018)【解答】解:如图,过B1作B1C⊥x轴,垂足为C,∵△OAB1是等边三角形,且边长为2,∴∠AOB1=60°,OB1=2,∴∠B1OC=30°,在RtB1OC中,可得B1C=1,OC=,∴B1的坐标为(,1),同理B2(2,2)、B3(3,3),∴Bn的坐标为(n,n),∴B2016的坐标为(2016,2016),∴A2016的坐标为(2016,2018),故选A.二、填空题(本大题共4小题,每小题3分,共12分)17.(3分)﹣的相反数是,倒数是﹣,绝对值是.【解答】解:﹣的相反数是﹣(﹣)=,倒数是=﹣,绝对值是|﹣|=.故本题的答案是;﹣;.18.(3分)已知a是整数,一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数,则这个质数等于5.【解答】解:∵一次函数的解析式为y=10x+a;∴图象与两坐标轴的交点为(0,a);(,0).∴图象与两坐标轴所围成的三角形的面积可表示为:S=×|a|×||=;∵一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数;∴a=10;∴一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为5.故填5.19.(3分)线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为(3,3)或(3,﹣7).【解答】解:∵线段AB的长为5,A(3,﹣2),B(3,x),∴=|﹣2﹣x|=5,解得:x1=3,x2=﹣7,∴点B的坐标为(3,3)或(3,﹣7).故答案为:(3,3)或(3,﹣7).20.(3分)如图,△ABC内接于⊙O,D是弧BC的中点,OD交BC于点H,且OH=DH,连接AD,过点B作BE⊥AD于点E,连接EH,BF⊥AC于M,若AC=5,EH=,则AF=.【解答】解:如图,延长BE交AC的延长线于N,连接OB、OC、BD.∵=,[来源:学#科#网]∴∠EAB=∠EAN,∵AD⊥BN,∴∠AEB=∠AEN=90°,∴∠ABE+∠BAE=90°,∠N+∠EAN=90°,∴∠ABE=∠N,∴AB=AN,∴BE=EN,∵OD⊥BC,∴BH=HC,∴CN=2EH,∴AB=AN=AC+CN=8,∵OH=HD,BH⊥OD,∴BO=BD=OD,∴∠BOD=∠DOC=60°,∴∠BAC=∠BOC=60°,在Rt△AMB中,AM=AB=4,BM=4,在Rt△BMC中,BC===7,∵∠MAF=∠MBC,∠AMF=∠BMC,∴△AMF∽△BMC,∴=,∴=,∴AF=.故答案为.三、解答题:(本大题共6小题,共66分,解答应写出文字说明,说理过程或演算步骤)21.(8分)(1)计算:2cos45°﹣(π+1)0(2)解方程:x(2x﹣5)=4x﹣10.【解答】解:(1)原式=2×﹣1++2=+;(2)方程整理得:x(2x﹣5)﹣2(2x﹣5)=0,分解因式得:(x﹣2)(2x﹣5)=0,解得:x1=2,x2=2.5.22.(10分)如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为AD=BE+DE;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【解答】(1)证明:如图①,延长DA到F,使DF=DE,∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°,又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE,∵在△ACF和△BCE中,,∴△ACF≌△BCE(SAS),[来源:学科网]∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)解:如图②,在AD上截取DF=DE,∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°,[来源:学科网ZXXK]又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE,∵在△ACF和△BCE中,,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;故答案为:AD=BE+DE.(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6,∵S△BCE=2S△ACD,∴AF=2AD,∴AD=×6=2,∴AE=AD+DE=2+6=8.23.(10分)松山区种子培育基地用A,B,C三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%,根据试验数据绘制了下面两个不完整的统计图:(1)求C型号种子的发芽数;(2)通过计算说明,应选哪种型号的种子进行推广?(3)如果将所有已发芽的种子放在一起,从中随机取出一粒,求取到C型号发芽种子的概率.【解答】解:(1)读图可知:C型号种子占1﹣30%﹣30%=40%,即1500×40%=600粒;因为其发芽率为80%,故其发芽数是600×80%=480粒.(2)A型号种子数为1500×30%=450,发芽率为:×100%≈93%;B型号种子数为1500×30%=450,发芽率为:×100%≈82%;C型号种子的发芽率为80%,所以应选A型号的种子进行推广.(3)在已发芽的种子中;有A型号的420粒,B型号的370粒,C型号的480粒;故从中随机取出一粒,求取到C型号发芽种子的概率为=.24.(12分)理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.思路二利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.【解答】解:(1)方法一:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tan∠DAC=tan75°====2+;方法二:tan75°=tan(45°+30°)====2+;(2)如图2,在Rt△ABC中,AB===30,sin∠BAC===,即∠BAC=30°.∵∠DAC=45°,∴∠DAB=45°+30°=75°.在Rt△ABD中,tan∠DAB=,[来源:学科网]∴DB=ABotan∠DAB=30o(2+)=60+90,∴DC=DB﹣BC=60+90﹣30=60+60.答:这座电视塔CD的高度为(60+60)米;(3)①若直线AB绕点C逆时针旋转45°后,与双曲线相交于点P,如图3.过点C作CD∥x轴,过点P作PE⊥CD于E,过点A作AF⊥CD于F.解方程组,得或,∴点A(4,1),点B(﹣2,﹣2).对于y=x﹣1,当x=0时,y=﹣1,则C(0,﹣1),OC=1,∴CF=4,AF=1﹣(﹣1)=2,∴tan∠ACF===,∴tan∠PCE=tan(∠ACP+∠ACF)=tan(45°+∠ACF)===3,即=3.设点P的坐标为(a,b),则有,解得:或,∴点P的坐标为(﹣1,﹣4)或(,3);②若直线AB绕点C顺时针旋转45°后,与x轴相交于点G,如图4.由①可知∠ACP=45°,P((,3),则CP⊥CG.过点P作PH⊥y轴于H,则∠GOC=∠CHP=90°,∠GCO=90°﹣∠HCP=∠CPH,∴△GOC∽△CHP,∴=.∵CH=3﹣(﹣1)=4,PH=,OC=1,∴==,∴GO=3,G(﹣3,0).设直线CG的解析式为y=kx+b,则有,解得,∴直线CG的解析式为y=﹣x﹣1.联立,消去y,得=﹣x﹣1,整理得:x2+3x+12=0,∵△=32﹣4×1×12=﹣39<0,[来源:学+科+网]∴方程没有实数根,∴点P不存在.综上所述:直线AB绕点C旋转45°后,能与双曲线相交,交点P的坐标为(﹣1,﹣4)或(,3).25.(12分)已知二次函数y1=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m,n的值.(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.(3)直接写出y1>y2时x的取值范围.【解答】解:∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴﹣=﹣1,∴m=2,∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),∴9﹣3m+n=1,∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为y=x2+2x﹣2,作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,∴=,∵P(﹣3,1),[来源:学#科#网Z#X#X#K]∴PC=1,∵PA:PB=1:5,∴PA:AB=1:6,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,解得x1=2,x2=﹣4(舍去),∴B(2,6),则,[来源:Z*xx*k.Com]解得,,∴一次函数的表达式为y2=x+4;(3)由图象可知,当x<﹣3或x>2时,y1>y2.26.(14分)如图,在以点O为圆心的两个同心圆中,小圆直径AE的延长线与大圆交于点B,点D在大圆上,BD与小圆相切于点F,AF的延长线与大圆相交于点C,且CE⊥BD.找出图中相等的线段并证明.【解答】解:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.[来源:学科网ZXXK]∵CE⊥BD,∴CE∥OF,[来源:学+科+网]∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。