资源资源简介:
免费2018年河北省唐山市路南区中考数学一模试卷含答案试卷分析解析2018年河北省唐山市路南区中考数学一模试卷一、选择题(本答题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分.在每小趣给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:(﹣3)+5的结果是()A.﹣2 B.2 C.8 D.﹣82.(3分)据统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,将82600000用科学记数法表示为()A.0.826×106 B.8.26×108 C.8.26×107 D.82.6×1063.(3分)下列图案属于轴对称图形的是()A. B. C. D.4.(3分)下列运算中,计算正确的是()A.(a2b)3=a5b3 B.(3a2)3=27a6 C.x6÷x2=x3 D.(a+b)2=a2+b25.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣26.(3分)如图所示的几何体中,它的主视图是()A. B. C. D.7.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)2=x2+2x+1 D.x2﹣x=x(x﹣1)8.(3分)如图,桌面上的木条b、c固定,木条a在桌面上绕点O旋转n°(0<n<90)后与b垂直,则n=()A.30 B.50 C.60 D.809.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.= B.= C.= D.=10.(3分)已知a﹣b=3,那么1﹣a+b=()A.﹣2 B.4 C.1 D.﹣111.(2分)某校男子足球队的年龄分布情况如下表:年龄(岁) 13 14 15 16 17 18人数 2 6 8 3 2 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,14 C.16,15 D.14,1512.(2分)已知反比例函数y=,当1<x<2时,y的最小整数值是()A.5 B.6 C.8 D.1013.(2分)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.a+3 B.a+6 C.2a+3 D.2a+614.(2分)如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,则下列各点的坐标不正确的是()A.C(﹣,) B.C′(1,0) C.P(﹣1,0) D.P′(0,﹣)15.(2分)如图,∠BAC内有一点P,过点P作直线l∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q、R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连接EF;②过P作直线l2∥EF,分别交两直线AB、AC于Q、R两点,则Q、R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q、R即为所求.下列判断正确的是()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确16.(2分)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中"直径"最小的是()A. B. C. D.二、填空题(本大题共3个小题:17-18每小题3分,19题4分,共10分.把答案写在题中横线上)17.(3分)2的倒数是.18.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.19.(4分)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚2次后点B的对应点B2的坐标是,翻滚100次后AB中点M经过的路径长为.三、解答题(本大题共7个小题,满分共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)在数轴上点A表示的数为a,点B为原点,点C表示的数为c,且已知a,c满足|a+1|+(c﹣7)2=0.(1)a=;c=;(2)若AC的中点为M,则点M表示的数为;(3)若A,C两点同时以每秒1个单位长度的速度向左运动,求第几秒时,恰好有BA=BC?21.(9分)2017年4月15日至5月15日,某市约8万名初三毕业生参加了中考体育测试,为了了解今年初三毕业生的体育成绩,从某校随机抽取了60名学生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:等级 成绩(分) 频数(人数) 频率A 27~30 24 0.4B 23~26 m xC 19~22 n yD 18及18以下 3 0.05合计 60 1.00请你根据以上图表提供的信息,解答下列问题:(1)m=,n=,x=,y=;(2)在扇形图中,B等级所对应的圆心角是度;(3)请你估计某市这8万名初三毕业生成绩等级达到优秀和良好的大约有多少人?(4)初三(1)班的甲、乙、丙、丁四人的成绩均为A,现决定从这四名同学中选两名参加学校组织的体育活动,直接写出恰好选中甲、乙两位同学的概率.22.(8分)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:"①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2."(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)23.(9分)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)点P2的坐标为;(2)求直线l的解析表达式;(3)求直线y=﹣x+b经过点P1,交x轴于点C,则b的值是多少?已知直线l与x轴交于点D,求△P1CD的面积是多少?24.(10分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,过D点作DF⊥AB于点F,①则cos∠EFF=;②求⊙O的半径.25.(12分)在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.26.(12分)某种植基地种植一种蔬菜,它的成本是每千克2元,售价是每千克3元,年销量为10(万千克).基地准备拿出一定的资金作绿色开发,若每年绿色开发投入的资金为x(万元),该种蔬菜的年销量将是原年销量的n倍,x与n的关系如下表:x(万元) 0 1 2 3 4 5 …m 1 1.5 1.8 1.9 1.8 1.5 …(1)猜想n与x之间的函数类型是函数,求出该函数的表达式并验证;(2)求年利润W1(万元)与绿色开发投入的资金x(万元)之间的函数关系式(注:年利润W1=销售总额﹣成本费﹣绿色开发投入的资金);当绿色开发投入的资金不低于3万元,又不超过5万元时,求此时年利润W1(万元)的最大值;(3)若提高种植人员的奖金,发现又增加一部分年销量,经调查发现:再次增加的年销量(万千克)与每年提高种植人员的奖金z(万元)之间满足y=﹣z2+4z,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使总年利润达到17万元且绿色开发投入大于奖金投入?()2018年河北省唐山市路南区中考数学一模试卷参考答案与试题解析一、选择题(本答题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分.在每小趣给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:(﹣3)+5的结果是()A.﹣2 B.2 C.8 D.﹣8【解答】解::(﹣3)+5=2.故选:B.2.(3分)据统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,将82600000用科学记数法表示为()A.0.826×106 B.8.26×108 C.8.26×107 D.82.6×106【解答】解:将82600000用科学记数法表示为8.26×107,故选:C.3.(3分)下列图案属于轴对称图形的是()A. B. C. D.【解答】解:A、能找出一条对称轴,故A是轴对称图形;[来源:Zxxk.Com]B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选:A.4.(3分)下列运算中,计算正确的是()A.(a2b)3=a5b3 B.(3a2)3=27a6 C.x6÷x2=x3 D.(a+b)2=a2+b2【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选:B.5.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.6.(3分)如图所示的几何体中,它的主视图是()A. B. C. D.【解答】解:从正面看左边一个正方形,右边一个正方形,故D符合题意;故选:D.7.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)2=x2+2x+1 D.x2﹣x=x(x﹣1)【解答】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、是整式的乘法,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选:D.8.(3分)如图,桌面上的木条b、c固定,木条a在桌面上绕点O旋转n°(0<n<90)后与b垂直,则n=()A.30 B.50 C.60 D.80【解答】解:如图,∵木条a在桌面上绕点O旋转n°(0<n<90)后与b垂直,∴木条a在桌面上要绕点O顺时针旋转50°.故选:B.9.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.= B.= C.= D.=【解答】解:设甲队每天修路xm,依题意得:=,故选:A.10.(3分)已知a﹣b=3,那么1﹣a+b=()A.﹣2 B.4 C.1 D.﹣1【解答】解:∵a﹣b=3,∴1﹣a+b=1﹣(a﹣b)=1﹣3=﹣2,故选:A.11.(2分)某校男子足球队的年龄分布情况如下表:年龄(岁) 13 14 15 16 17 18人数 2 6 8 3 2 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,14 C.16,15 D.14,15【解答】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15.故选:A.12.(2分)已知反比例函数y=,当1<x<2时,y的最小整数值是()A.5 B.6 C.8 D.10【解答】解:反比例函数y=,∴当1<x<2时,5<y<10,∴y的最小整数值是6,故选:B.13.(2分)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.a+3 B.a+6 C.2a+3 D.2a+6【解答】解:长方形的另一边长是:(a+3)+3=a+6,故选:B.14.(2分)如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,则下列各点的坐标不正确的是()A.C(﹣,) B.C′(1,0) C.P(﹣1,0) D.P′(0,﹣)【解答】解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+)2+,∴P(﹣1,0),O(0,0),C(﹣,).又∵将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,∴该抛物线向下平移了个单位,向右平移了1个单位,∴C′(,0),P′(0,﹣).综上所述,选项B符合题意.故选:B.15.(2分)如图,∠BAC内有一点P,过点P作直线l∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q、R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连接EF;②过P作直线l2∥EF,分别交两直线AB、AC于Q、R两点,则Q、R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q、R即为所求.下列判断正确的是()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【解答】解:甲:利用平行四边形的判定与性质可得到PQ=EF,PR=EF,则PQ=PR;乙:利用平行线分线段成比例得到RP=RQ,所以甲乙的作法都正确.故选:A.16.(2分)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中"直径"最小的是()A. B. C. D.【解答】解:连接BC,则BC为这个几何图形的直径,过O作OM⊥BC于M,∵OB=OC,∴∠BOM=∠BOC=60°,∴∠OBM=30°,∵OB=2,OM⊥BC,∴OM=OB=1,由勾股定理得:BM=,∴由垂径定理得:BC=2;连接AC、BD,则BD为这个图形的直径,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,∴AO=AB=1,由勾股定理得:BO=,∴BD=2BO=2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==,∵2>>2,∴选项A、B、D错误,选项C正确;故选:C.二、填空题(本大题共3个小题:17-18每小题3分,19题4分,共10分.把答案写在题中横线上)17.(3分)2的倒数是.【解答】解:2×=1,答:2的倒数是.18.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=4.5.【解答】解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A点坐标为(1,0),D点坐标为(3,0),∴AO=1,DO=3,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.19.(4分)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚2次后点B的对应点B2的坐标是(2,0),翻滚100次后AB中点M经过的路径长为(+44)π.【解答】解:由题意B2(2,0)观察图象可知3三次一个循环,一个循环点M的运动路径为:++=()π,∵100÷3=33…1,∴翻滚2017次后AB中点M经过的路径长为33o()π+π=(+44)π.故答案为(+44)π.三、解答题(本大题共7个小题,满分共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)在数轴上点A表示的数为a,点B为原点,点C表示的数为c,且已知a,c满足|a+1|+(c﹣7)2=0.(1)a=﹣1;c=7;(2)若AC的中点为M,则点M表示的数为3;(3)若A,C两点同时以每秒1个单位长度的速度向左运动,求第几秒时,恰好有BA=BC?【解答】解:(1)由|a+1|+(c﹣7)2=0,得a+1=0,c﹣7=0,解得a=﹣1,c=7,故答案为:﹣1,7.(2)由中点坐标公式,得=3,M点表示的数为3,故答案为:3.(3)设第x秒时,BA=BC,由题意,得x+1=7﹣x,解得x=3,第3秒时,恰好有BA=BC.21.(9分)2017年4月15日至5月15日,某市约8万名初三毕业生参加了中考体育测试,为了了解今年初三毕业生的体育成绩,从某校随机抽取了60名学生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:等级 成绩(分) 频数(人数) 频率A 27~30 24 0.4B 23~26 m xC[来源:Zxxk.Com] 19~22 n yD 18及18以下 3 0.05合计 60 1.00请你根据以上图表提供的信息,解答下列问题:(1)m=21,n=12,x=0.35,y=0.2;(2)在扇形图中,B等级所对应的圆心角是126度;(3)请你估计某市这8万名初三毕业生成绩等级达到优秀和良好的大约有多少人?(4)初三(1)班的甲、乙、丙、丁四人的成绩均为A,现决定从这四名同学中选两名参加学校组织的体育活动,直接写出恰好选中甲、乙两位同学的概率.【解答】解:(1)m=60×35%=21,n=60﹣21﹣24﹣3=12,x=35%=0.35,y=12÷60=0.2;(2)B等级所对应的圆心角35%×360°=126°;(3)由上表可知达到优秀和良好的共有21+24=45人,8×=6(万人),答:估计这8万名初三毕业生成绩等级达到优秀和良好的大约有6万人;(4)∵从甲、乙、丙、丁四人选两人有如下6种结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁),恰好选中甲、乙两位同学的结果只有1种,∴恰好选中甲、乙两位同学的概率为;故答案为:(1)21,12,0.35,0.2;(2)126.22.(8分)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:"①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2."(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【解答】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2nx2=﹣4n.23.(9分)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)点P2的坐标为(3,3);(2)求直线l的解析表达式;(3)求直线y=﹣x+b经过点P1,交x轴于点C,则b的值是多少?已知直线l与x轴交于点D,求△P1CD的面积是多少?【解答】解:(1)∵将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P1的坐标为(2,1),∴点P2的坐标为(3,3).故答案为:(3,3).(2)设直线l的解析表达式为y=mx+n(m≠0),将P1(2,1)、P2(3,3)代入y=mx+n,得,解得:,∴直线l的解析表达式为y=2x﹣3.(3)∵求直线y=﹣x+b经过点P1(2,1),∴1=﹣2+b,∴b=3,∴直线CP1的解析表达式为y=﹣x+3,∴点C的坐标为(0,3).设直线CP1的x轴的交点为E,则点E(3,0).当y=0时,有2x﹣3=0,解得:x=,∴点D的坐标为(,0),∴=S△COE﹣S△COD﹣=×3×3﹣×3×﹣××1=.24.(10分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,过D点作DF⊥AB于点F,[来源:学科网ZXXK]①则cos∠EFF=;②求⊙O的半径.【解答】(1)证明:∵BD为切线,∴OB⊥BD,[来源:Z。xx。k.Com]∴∠OBD=90°,即∠OBE+∠DBE=90°,∵CD⊥OA,∴∠A+∠AEC=90°,而OA=OB,∴∠A=∠OBE,∴∠AEC=∠DBE,∵∠AEC=∠DEB,∴∠DEB=∠DBE,∴DB=DE;(2)解:①连接OE,如图,∵E是AB的中点,∴AE=BE=6,∵DE=DB=5,DF⊥BE,∴EF=BE=3,在Rt△DEF中,DF==4,cos∠EDF==;故答案为;②连接OE,如图,∵E是AB的中点,∴OE⊥AB,∴∠OEB=90°∴∠EOB+∠EBO=90°,而∠OBE+∠DBE=90°,∴∠EOB=∠DBF,在Rt△OBE中,sin∠EOB==sin∠DBF=,∴OB==,即⊙O的半径为.25.(12分)在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=10,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【解答】解:(1)如图①,∵点A(8,0),点B(0,6),∴OA=8,OB=6,∴AB=10,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=10;故答案为:10;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=6,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=3,O′H=BH=3,∴OH=OB+BH=6+3=9,∴O′点的坐标为(3,9);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣6),设直线O′C的解析式为y=kx+b,把O′(3,9),C(0,﹣6)代入得,解得,∴直线O′C的解析式为y=x﹣6,当y=0时,x﹣6=0,解得x=,则P(,0),[来源:Zxxk.Com]∴OP=,∴O′P′=OP=作P′D⊥O′H于D,∵∠BO′A′=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=3﹣=,∴P′点的坐标为(,).26.(12分)某种植基地种植一种蔬菜,它的成本是每千克2元,售价是每千克3元,年销量为10(万千克).基地准备拿出一定的资金作绿色开发,若每年绿色开发投入的资金为x(万元),该种蔬菜的年销量将是原年销量的n倍,x与n的关系如下表:x(万元) 0 1 2 3 4 5 …m 1 1.5 1.8 1.9 1.8 1.5 …(1)猜想n与x之间的函数类型是n=﹣0.1x2+0.6x+1函数,求出该函数的表达式并验证;(2)求年利润W1(万元)与绿色开发投入的资金x(万元)之间的函数关系式(注:年利润W1=销售总额﹣成本费﹣绿色开发投入的资金);当绿色开发投入的资金不低于3万元,又不超过5万元时,求此时年利润W1(万元)的最大值;(3)若提高种植人员的奖金,发现又增加一部分年销量,经调查发现:再次增加的年销量(万千克)与每年提高种植人员的奖金z(万元)之间满足y=﹣z2+4z,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使总年利润达到17万元且绿色开发投入大于奖金投入?()【解答】解:(1)根据题中数据分析不是一次函数(不是线性的),也不是反比例函数(n*x的值不是常数),所以选择二次函数,设n与x的函数关系式为n=ax2+bx+c,由题意得:,解得:,∴n与x的函数关系式为:n=﹣0.1x2+0.6x+1;故答案为:n=﹣0.1x2+0.6x+1.(2)∵利润=销售总额减去成本费和绿色开发的投入资金,∴W=(3﹣2)×10n﹣x=﹣x2+5x+10;当x=时,w最大,∵由于投入的资金不低于3万元,又不超过5万元,所以3≤x≤5,而a=﹣1<0,抛物线开口向下,且取值范围在顶点右侧,W随x的增大而减小,故最大值在x=3处,∴当x=3时,W最大为:16万元;(3)设用于绿色开发的资金为n万元,则用于提高奖金的资金为(5﹣n)万元,将n代入(2)中的W=﹣x2+5x+10,故W=﹣n2+5n+10;将(5﹣n)代入y=﹣z2+4z,故y=﹣(5﹣n)2+4(5﹣n)=﹣n2+6n﹣5,由于单位利润为1,所以由增加奖金而增加的利润就是﹣n2+6n﹣5;所以总利润W'=(﹣n2+5n+10)+(﹣n2+6n﹣5)﹣(5﹣n)=﹣2n2+12n,因为要使年利润达到17万,所以﹣2n2+12n=17,整理得2n2﹣12n+17=0,解得:n=,或n=,而绿色开发投入要大于奖金,所以n=3.7,5﹣n=1.3.所以用于绿色开发的资金为3.7万元,奖金为1.3万元.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。