资源资源简介:
免费2015-2017学年文科真题分项解析—专题17:立体几何中线面1.【2017课标1,文6】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A.B.C.D.【答案】A【考点】空间位置关系判断【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.2.【2017课标3,文10】在正方体中,E为棱CD的中点,则()A. B. C. D.【答案】C【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若,那么,很显然不成立;B.若,那么,显然不成立;C.若,那么,成立,反过来时,也能推出,所以C成立,D.若,则,显然不成立,故选C.【考点】线线位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3.【2014高考广东卷.文.9】若空间中四条直线两两不同的直线...,满足,,,则下列结论一定正确的是()A.B.C..既不平行也不垂直D..的位置关系不确定【答案】D【考点定位】本题考查空间中直线的位置关系的判定,属于中等题.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于中等题.解题时一定要注意选"正确"还是选"错误",否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.4.【2016高考山东文数】已知直线a,b分别在两个不同的平面α,内,则"直线a和直线b相交"是"平面α和平面相交"的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件【答案】A【解析】试题分析:"直线和直线相交""平面和平面相交",但"平面和平面相交""直线和直线相交",所以"直线和直线相交"是"平面和平面相交"的充分不必要条件,故选A.考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.5.【2015高考广东,文6】若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()A.至少与,中的一条相交B.与,都相交C.至多与,中的一条相交D.与,都不相交【答案】A【考点定位】空间点、线、面的位置关系.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要注意选项中的重要字眼"至少"、"至多",否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.6.【2016高考上海文科】如图,在正方体ABCD?A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1(C)直线A1D1 (D)直线B1C1【答案】D【解析】试题分析:只有与在同一平面内,是相交的,其他A,B,C中直线与都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.7.【2014辽宁文4】已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则B.若,,则C.若,,则D.若,,则【答案】B【考点定位】空间直线和平面的位置关系.【名师点睛】本题考查空间直线与直线、直线与平面、平面与平面的平行关系及垂直关系.解题分关键是熟记相关性质定理、判定定理等,首先利用举反例排除错误选项,是解答此类问题的常用方法.本题属于基础题,覆盖面较广,难度不大.8.【2015高考湖北,文5】表示空间中的两条直线,若p:是异面直线;q:不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件【答案】.【解析】若p:是异面直线,由异面直线的定义知,不相交,所以命题q:不相交成立,即p是q的充分条件;反过来,若q:不相交,则可能平行,也可能异面,所以不能推出是异面直线,即p不是q的必要条件,故应选.【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9.【2015高考浙江,文4】设,是两个不同的平面,,是两条不同的直线,且,()A.若,则B.若,则C.若,则D.若,则【答案】A【考点定位】直线、平面的位置关系.【名师点睛】本题主要考查空间直线、平面的位置关系.解答本题时要根据空间直线、平面的位置关系,从定理、公理以及排除法等角度,对个选项的结论进行确认真假.本题属于容易题,重点考查学生的空间想象能力以及排除错误结论的能力.10.【2014年.浙江卷.文6】设、是两条不同的直线,、是两个不同的平面,则()A.若,,则B.若,,则C.若,,,则D.若,,,则【答案】C【解析】试题分析:对A,若,,则或或,错误;对B,若,,则或或,错误;对C,若,,,则,正确;对D,若,,,则或或,错误.故选C.考点:空间中的线线、线面、面面的位置关系,容易题.【名师点睛】本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.11.【2017课标1,文18】如图,在四棱锥P-ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.【答案】(1)证明见解析;(2).由于,故,从而平面.又平面,所以平面平面.(2)在平面内作,垂足为.由(1)知,平面,故,可得平面.设,则由已知可得,.故四棱锥的体积.由题设得,故.从而,,.可得四棱锥的侧面积为.【考点】空间位置关系证明,空间几何体体积、侧(表)面积计算【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;先利用线面平行说明点面距为定值,计算点面距时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点到平面的距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.12.【2017山东,文18】(本小题满分12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E平面ABCD,(Ⅰ)证明:∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM平面B1CD1.【答案】①证明见解析.②证明见解析.所以,因此四边形为平行四边形,所以,又面,平面,所以平面,(II)因为,,分别为和的中点,所以,因为为正方形,所以,又平面,平面所以因为所以又平面,.所以平面又平面,所以平面平面.【考点】空间中的线面位置关系【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.13.【2017江苏,15】如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析(2)见解析所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.【考点】线面平行判定定理、线面垂直判定与性质定理,面面垂直性质定理【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.14.【2016高考北京文数】(本小题14分)如图,在四棱锥中,平面,(I)求证:;(II)求证:;(III)设点E为AB的中点,在棱PB上是否存在点F,使得平面?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III)存在.理由见解析.所以.又因为,所以平面.(II)因为,,所以.因为平面,所以.所以平面.所以平面平面.(III)棱上存在点,使得平面.证明如下:取中点,连结,,.又因为为的中点,所以.又因为平面,所以平面.考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.15.【2014四川,文18】(本小题满分12分) 在如图所示的多面体中,四边形和都为矩形。(Ⅰ)若,证明:直线平面;(Ⅱ)设,分别是线段,的中点,在线段上是否存在一点,使直线平面?请证明你的结论。【答案】(1)证明详见解析;(2)存在,M为线段AB的中点时,直线平面.试题解析:(Ⅰ)因为四边形和都是矩形,所以.因为AB,AC为平面ABC内的两条相交直线,所以平面ABC.因为直线平面ABC内,所以.又由已知,为平面内的两条相交直线,所以,平面.(2)取线段AB的中点M,连接,设O为的交点.由已知,O为的中点.连接MD,OE,则MD,OE分别为的中位线.所以,,连接OM,从而四边形MDEO为平行四边形,则.因为直线平面,平面,所以直线平面.即线段AB上存在一点M(线段AB的中点),使得直线平面.【考点定位】空间直线与平面的位置关系.【名师点睛】证明直线和平面垂直可以利用判定定理,即线线垂直到线面垂直;也可以利用面面垂直的性质定理,即面面垂直到线面垂直;立体几何中的"是否存在"问题解决办法通常为先取在证.16.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF平面BEG【解析】(Ⅰ)点F,G,H的位置如图所示又CH平面ACH,BE平面ACH,所以BE∥平面ACH同理BG∥平面ACH又BE∩BG=B所以平面BEG∥平面ACH(Ⅲ)连接FH因为ABCD-EFGH为正方体,所以DH⊥平面EFGH因为EG平面EFGH,所以DH⊥EG又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD又DF平面BFDH,所以DF⊥EG同理DF⊥BG又EG∩BG=G所以DF⊥平面BEG.【考点定位】本题主要考查简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查空间想象能力、推理论证能力.【名师点睛】本题引入了几何体表面的折展问题,对空间想象能力要求较高.立体几何的证明一定要详细写出所有步骤,列举(推证)出所有必备的条件,如在(Ⅱ)中证明两个平面平行时,除了找到两组平行线外,一定不能忘掉"相交"这个条件;同样,(Ⅲ)中证明线面垂直,也不能忘掉"EG∩BG=G"这个条件.属于中档题.17.【2014山东.文18】(本小题满分12分)如图,四棱锥中,⊥平面,∥,,分别为线段的中点.求证:∥平面;求证:⊥平面.【答案】(1)见解析;(2)见解析.(2)由题意知可得四边形为平行四边形,得到.又平面PCD,推出.根据四边形ABCE为菱形,得到.即得证.试题解析:(1)设,连结OF,EC,由于E为AD的中点,,所以,因此四边形ABCE为菱形,所以O为AC的中点,又F为PC的中点,因此在中,可得.又平面BEF,平面BEF,所以∥平面.(2)由题意知,,所以四边形为平行四边形,因此.又平面PCD,所以,因此.因为四边形ABCE为菱形,所以.又,AP,AC平面PAC,所以⊥平面.考点:平行四边形、菱形,平行关系,垂直关系.【名师点睛】本题考查了空间直线与直线、直线与平面、平面与平面的平行关系和垂直关系及几何体的特征.对于本题,适当添加辅助线,转化成平面问题,化难为易,体现了解题的灵活性.本题是一道能力题,属于中等题,重点考查空间垂直关系、平行关系、几何体的特征等基础知识,同时考查考生的计算能力、逻辑推理能力、空间想象能力、转化与化归思想及应用数学知识解决问题的能力.18.【2016高考山东文数】(本小题满分12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析.试题解析:(Ⅰ))证明:因,所以与确定一个平面,连接,因为为的中点,所以;同理可得,又因为,所以平面,因为平面,。(Ⅱ)设的中点为,连,在中,是的中点,所以,又,所以;在中,是的中点,所以,又,所以平面平面,因为平面,所以平面.考点:1.平行关系;2.垂直关系.【名师点睛】本题主要考查直线与直线垂直、直线与平面平行.此类题目是立体几何中的基本问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,给出规范的证明.本题能较好的考查考生的空间想象能力、逻辑推理能力及转化与化归思想等.19.【2015高考山东,文18】如图,三棱台中,分别为的中点.(I)求证:平面;(II)若求证:平面平面.【答案】证明见解析又平面,平面,所以平面.证法二:在三棱台中,由为的中点,可得所以为平行四边形,可得在中,分别为的中点,所以又,所以平面平面,因为平面,所以平面.(II)证明:连接.因为分别为的中点,所以由得,又为的中点,所以因此四边形是平行四边形,所以又,所以.又平面,,所以平面,又平面,所以平面平面【考点定位】1.平行关系;2.垂直关系.【名师点睛】本题考查了空间几何体的特征及空间直线与直线、直线与平面、平面与平面的平行关系和垂直关系,从证明方法看,起点低,入口宽,特别是第一小题.证明过程中,关键是注意构造线线的平行关系、垂直关系,特别是注意利用平行四边形,发现线线关系,进一步得到线面关系、面面关系.本题是一道能力题,属于中等题,重点考查两空间几何体的特征及空间直线、平面的平行关系和垂直关系等基础知识,同时考查考生的逻辑推理能力、空间想象能力思维的严密性、函数方程思想及应用数学知识解决问题的能力.20.【2015高考广东,文18】(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,,,.(1)证明:平面;(2)证明:;(3)求点到平面的距离.【答案】(1)证明见解析;(2)证明见解析;(3).试题解析:(1)因为四边形是长方形,所以,因为平面,平面,所以平面(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以(3)取的中点,连结和,因为,所以,在中,,因为平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是【考点定位】1、线面平行;2、线线垂直;3、点到平面的距离.【名师点晴】本题主要考查的是线面平行、线线垂直和点到平面的距离,属于中档题.证明线面平行的关键是证明线线平行,证明线线平行常用的方法是三角形的中位线和构造平行四边形.证明线线垂直的关键是证明线面垂直,证明线面垂直可由面面垂直得到,但由面面垂直得到线面垂直一定要注意找两个面的交线,否则很容易出现错误.点到平面的距离是转化为几何体的体积问题,借助等积法来解决.21.【2015天津文17】(本小题满分13分)如图,已知平面ABC,AB=AC=3,,,点E,F分别是BC,的中点.(I)求证:EF平面;(II)求证:平面平面.(III)求直线与平面所成角的大小.【答案】(I)见试题解析;(II)见试题解析;(III).【解析】试题分析:(I)要证明EF平面,只需证明且EF平面;(II)要证明平面平面,可证明,;(III)取中点N,连接,则就是直线与平面所成角,Rt△中,由得直线与平面所成角为.(III)取中点M和中点N,连接,因为N和E分别为,BC中点,所以,,故,,所以,,又因为平面,所以平面,从而就是直线与平面所成角,在△中,可得AE=2,所以=2,因为,所以又由,有,在Rt△中,可得,在Rt△中,因此,所以,直线与平面所成角为.【考点定位】本题主要考查空间中线面位置关系的证明,直线与平面所成的角等基础知识,考查空间想象能力及推理论证能力.【名师点睛】空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。