资源资源简介:
免费2018年浙江省中考《第31讲:数据的分析及其应用》总复习讲解含真题分类汇编解析第31讲数据的分析及其应用1.数据的代表考试内容 考试要求平均数 算术平均数 一组数据x1,x2,…,xn,它的平均数x=_________________. bc 加权平均数 若n个数x1,x2,…,xn的权分别是f1,f2,…,fn,则其加权平均数x=____________________. 中位数 将一组数据按照由小到大(或由大到小)的顺序排列,若数据的个数为奇数,则处于的数就是这组数据的中位数;若数据的个数为偶数,则中间两个数据的就是这组数据的中位数. 确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定. 众数 在一组数据中,出现的数据就是这组数据的众数. (1)一组数据中众数不一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来考察. 2.数据的波动考试内容 考试要求表示数据波动的量 定义 意义 bc方差 设有n个数据x1,x2,x3,…,xn,各数据与它们____________________的差的平方分别是(x1-x)2,(x2-x)2,…,(xn-x)2,我们用它们的平均数,即用____________________来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作S2. 方差越大,数据的波动越,反之也成立. 标准差 我们也用方差的算术平方根来描述一组数据的离散程度,并把它叫做这组数据的标准差 标准差越大,数据的波动越,反之也成立. 考试内容 考试要求基本思想 统计的基本思想:利用样本特征去估计总体的特征是统计的基本思想.注意样本的选取要有足够的代表性. c基本方法 利用数据进行决策:利用数据进行决策时,要全面、多角度地去分析已有数据,比较它们的代表性和波动大小,发现它们的变化规律和发展趋势,从而作出正确决策. 1.(2017·湖州)数据-2,-1,0,1,2,4的中位数是()A.0B.0.5C.1D.22.(2017·温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个3.(2017·绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差: 甲 乙 丙 丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁4.(2017·台州)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【问题】某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表 第1次 第2次 第3次 第4次 第5次甲成绩 9 4 7 4 6乙成绩 7 5 7 a 7(1)a=________,x乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填"甲"或"乙").参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中;(4)通过(1)、(2)、(3)解答体验,数据的分析应运用哪些统计量,这些统计量特点是什么?【归纳】通过开放式问题,归纳、疏理统计量:平均数、中位数、众数、极差、方差、标准差,以及它们的特征;对统计量进行合理地选择和恰当地运用,全面、多角度地去分析已有数据,利用数据进行决策.类型一平均数、众数和中位数的计算与应用例1(2017·嘉兴模拟)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2017年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55B.众数是60C.方差是29D.平均数是54【解后感悟】此题主要运用了平均数、众数、中位数及方差的知识,解题时分别计算出众数、中位数、平均数及方差后找到正确的选项即可.求中位数这类问题一般要把数据从小到大排列,设数据的总数为n,若n为奇数,则中位数为第n+12个数;若n为偶数,则中位数为第n2个数与n2+1个数的平均数.例2(2016·衢州)在某校"我的中国梦"演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数【解后感悟】此题反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用;解决这类问题的关键是弄清概念,平均数的大小与一组数据里的每一个数据均有关系,其中任何一个数据的变动都会引起平均数的变动;众数着眼于各数据出现的频率,其大小只与这组数据中的部分数据有关,可以是一个或多个;中位数则与数据的排列位置有关,某些数据的变动对中位数没有影响,计算时要分清数据是奇数个,还是偶数个.1.(1)(2015·宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数(2)(2016·台湾)图1、图2分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b;中位数分别为c、d,则下列关于a、b、c、d的大小关系,何者正确?()A.a>b,c>dB.a>b,c<dC.a<b,c>dD.a<b,c<d2.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9.乙:5,9,7,10,9.(1)填写下表: 平均数 众数 中位数 方差甲 8 ____________________ 8 0.4乙 ____________________ 9 ____________________ 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差____________________.(填"变大"、"变小"或"不变").类型二方差、标准差的计算与应用例3(2015·吉林)要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲,乙这10次射击成绩的方差S2甲,S2乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选______参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选________参赛更合适.【解后感悟】方差是用来衡量一组数据波动大小的量,一般地设n个数据,x1,x2,…,xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.(2017·舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a-2,b-2,c-2的平均数和方差分别是()A.3,2B.3,4C.5,2D.5,44.(2017·郑州模拟)九(3)班为了参加学校举行的"五水共治"知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次"五水共治"模拟竞赛,根据成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数x甲组=7,方差S2甲组=1.5.请通过计算说明,哪一组成绩优秀的人数较稳定?类型三利用统计量解决实际问题例4(2016·青岛)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下: 平均成绩/环 中位数/环 众数/环 方差甲 a 7 7 1.2乙 7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【解后感悟】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用;熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.5.八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学 答对题数 答错题数 未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).【实际探究题】小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.第二步:小红量得测点D处到树底部B的水平距离BD=a.第三步:量出测角仪的高度CD=b.之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.请你根据两个统计图提供的信息解答下列问题.(1)把统计图中的相关数据填入相应的表格中: a b β第一次 第二次 第三次 平均值 (2)根据表中得到的样本平均值计算出风筝的高度AB.(参考数据:3≈1.732,2≈1.414,结果保留3个有效数字).【方法与对策】本题是实践性应用题,通过社会实践活动来收集数据、整理和分析数据,得出结论;同时该题利用统计图来结合直角三角形,在解直角三角形时,如果有直角三角形直接利用边角关系直接求出,如果没有直角三角形可以构造直角三角形再利用边角关系去解.这类题型解直角三角形与统计结合是中考命题趋向.【忽视选用合适的公式计算平均数】某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表,则这20户家庭这个月的平均用水量是吨.用水量(吨) 4 5 6 8户数 3 8 4 5参考答案第31讲数据的分析及其应用【考点概要】1.x1+x2+…+xnnx1f1+x2f2+…+xnfnf1+f2+…+fn中间位置平均数次数最多2.平均数1n[(x1-x)2+(x2-x)2+…+(xn-x)2]大大【考题体验】1.B2.C3.D4.A【知识引擎】【解析】(1)求乙射的总环数→计算表中已知总环数→求a,x乙.故答案4,6.(2)观察乙表中成绩数→在折线图上描点连线.如图.(3)方差的概念→计算乙的方差→比较甲、乙方差大小→结论.①乙,乙的方差=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于甲的方差是3.6,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.(4)平均数、中位数、众数、极差、方差、标准差.反映数据集中程度的统计量有平均数、中位数、众数;反映数据的离散程度的统计量有极差、方差、标准差.【例题精析】例1C例2因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.例3(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动大于乙的波动,则S2甲>S2乙;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.故答案为:乙,甲.例4(1)甲的平均成绩a=5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【变式拓展】1.(1)D(2)A2. (1)889(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.(3)变小3. B4.(1)∵第一次成绩优秀的人数是11人,优秀率为55%,∴选取的学生总人数为1155%=20(人).∴第三次成绩的优秀率是1320×100%=65%.∴乙组第四次成绩优秀的人数为20×85%-8=9(人),补图略.(2)乙组成绩优秀人数的平均数为x乙组=6+8+5+94=7,方差S2乙组=14[(6-7)2+(8-7)2+(5-7)2+(9-7)2]=2.5.∵两组成绩优秀人数的平均数相同,甲组成绩优秀人数的方差小于乙组成绩优秀人数的方差,∴甲组成绩优秀的人数较稳定.5.(1)x=(19+17+15+17)×5+(2+2+1)×(-2)4=82.5(分).(2)①设E同学答对x题,答错y题,由题意得5x-2y=58,x+y=13,解得x=12,y=1,∴E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.【热点题型】【分析与解】(1)要根据题中所给的条形统计图和折线统计图完成下列表格. a b β第一次 15.71 1.31 29.5°第二次 15.83 1.33 30.8°第三次 15.89 1.32 29.7°平均值 15.81 1.32 30°(2)利用解直角三角形的知识即可求出风筝的高度.由题意得:四边形BDCE为矩形,∴EC=BD=15.81m,BE=CD=1.32m,∠AEC=90°,在Rt△AEC中,∠AEC=90°,∠β=30°,∵tanβ=AEEC.∴AE=EC·tan30°=15.81×33≈15.81×0.577≈9.122m.∴AB=AE+BE=9.122+1.32≈10.4(m).∴风筝的高度AB约为10.4m.【错误警示】平均用水量为x=4×3+5×8+6×4+8×520=5.8(吨),故填5.8.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。