资源资源简介:
免费2018年河南省中考数学选填题重难点题型(四)涉及分类讨论思想的折叠问题含考点分类汇编详解选填题重难点题型(四)涉及分类讨论思想的折叠问题1.(2017周口商水县一模)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,BE的长为或.2.(2017濮阳模拟)在矩形ABCD中,AB=3,BC=6,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C、D的对应点分别为C′、D′,折痕与边AD交于点F,当点B、C′、D′恰好在同一直线上时,AF的长为4或4﹣.3.(2017许昌一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为或.4.(2017洛阳一模)在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF折叠,使点A落在点A′处,当△A′CD时等腰三角形时,AP的长为或.5.(2017安阳、林州二模)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B,C重合),经过点O、P折叠该纸片,得点B′和折痕OP(如图①)经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ(如图②),当点C′恰好落在OA上时,点P的坐标是或.补充类型6.(2017贵州安顺第7题)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为(C)A.6cm B.7cm C.8cm D.9cm7.(2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于(D)A.2 B. C. D.8.(2017新疆乌鲁木齐第9题)如图,在矩形中,点在上,点在上,把这个矩形沿折叠后,使点恰好落在边上的点处,若矩形面积为且,则折痕的长为(C)A.B.C.D.[来源:Z§xx§k.Com]9.(2015湖北鄂州第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A. B. C. D..[来源:Zxxk.Com]10.(2015o四川自贡,第10题4分)如图,在矩形中,,是边的中点,是线段边上的动点,将△沿所在直线折叠得到△,连接,则的最小值是 (A)A.B.6C.D.4[来源:学_科_网Z_X_X_K]11.(2015o绵阳第12题,3分)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=(B) A. B. C. D. 12.(2017江苏苏州第18题)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则(结果保留根号).13.(2017海南第17题)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.14.(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1.15.(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a(用含a的式子表示).16.(2015年江苏泰州3分)如图,矩形中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为▲.17.(2015o四川省内江市,第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.18.(2015o浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为(10,3).19.(2017甘肃兰州第26题)如图,1,将一张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点.(1)求证:是等腰三角形;(2)如图2,过点作,交于点,连结交于点.[来源:学科网ZXXK]①判断四边形的形状,并说明理由;②若,,求的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.试题解析:(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵FD∥BG,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+A2=BF2,即62+(8﹣x)2=x2,解得x=,即BF=,∴FO==,∴FG=2FO=.20.(2017浙江金华第23题)如图1,将纸片沿中位线折叠,使点的对称点落在边上,再将纸片分别沿等腰和等腰的底边上的高线,折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_____,_____;______.(2)纸片还可以按图3的方式折叠成一个叠合矩形,若,,求的长.(3)如图4,四边形纸片满足.小明把该纸片折叠,得到叠合正方形.请你帮助画出叠合正方形的示意图,并求出的长.【答案】(1)(1)AE;GF;1:2;(2)13;(3)按图1的折法,则AD=1,BC=7;按图2的折法,则AD=,BC=.【解析】试题分析:(1)由图2观察可得出答案为AE,GF,由折叠的轴对称性质可得出答案为1:2;(2)由EF和EH的长度根据勾股定理可求出FH的长度,再由折叠的轴对称性质易证△AEH≌△CGF;再根据全等三角形的性质可得出AD的长度;(3)由折叠的图可分别求出AD和BC的长度.(3)解:本题有以下两种基本折法,如图1,图2所示.[来源:Z。xx。k.Com]按图1的折法,则AD=1,BC=7.按图2的折法,则AD=,BC=.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。