资源资源简介:
河北省2016届数学初中升学文化课考试模拟试卷含答案解析2015年河北省初中毕业生升学文化课考试模拟试卷(二)一、选择题(共16小题,1-6小题每小题2分,7-16小题每小题2分,满分42分)1.2014年在进入12月份后又迎来了大幅降温提拿起,12月5日哈尔滨、沈阳、石家庄、济南的最高气温分别为﹣12°、17°、6°、5°,则这四个城市中在这天的最高气温最高的是()A.哈尔滨 B.沈阳 C.石家庄 D.济南2.下列四个腾讯软件图标中,属于轴对称图形的是()A. B. C. D.3.下列无理数中,不是介于﹣3与2之间的是()A.﹣ B. C.﹣ D.4.如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35° B.45° C.55° D.65°5.已知直线l与半径为2的⊙O的位置关系是相离,则点O到直线l的距离的取值范围在数轴上的表示正确的是()A. B. C. D.6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.207.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定8.已知a=+2,b=﹣2,则(﹣)÷的值为()A.1 B. C. D.9.若一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,则a+3b的值为()A.136 B.268 C. D.10.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A.20m B.25m C.30m D.35m11.已知∠BOP与OP上点C,点A(在点C的右边),李玲现进行如下操作:①以点O为圆心,OC长为半径画弧,交OB于点D,连接CD;②以点A为圆心,OC长为半径画弧MN,交OA于点M;③以点M为圆心,CD长为半径画弧,交弧MN于点E,连接ME,操作结果如图所示,下列结论不能由上述操作结果得出的是()A.CD∥ME B.OB∥AE C.∠ODC=∠AEM D.∠ACD=∠EAP12.王芳将如图所示的三条水平直线m1,m2,m3的其中一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2﹣6ax﹣3,则她所选择的x轴和y轴分别为()A.m1,m4 B.m2,m3 C.m3,m6 D.m4,m513.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A.125° B.130° C.135° D.140°14.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056 D.1.1111111×101715.如图,在△ABC中,BC=5,D、E分别是AB、AC上的点,连接DE,有DE=3且DE∥BC,现有将△ABC沿BC平移一段距离得到△A′B′C′,A′B′与AC交于点F,并测得∠A′FE=131°,D,E的对应点分别是D′,E′,3S四边形B′CED′=S四边形BC′E′D,则下列说法不正确的是()A.∠A=49° B.四边形CC′E′E是平行四边形C.B′C=DE D.S△ABC=5S△D′FE16.如图,双曲线y=与y=﹣分别为一第一、第四象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于点D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,﹣);③△ABC的面积为定值7,正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(共4小题,每小题3分,满分12分)17.已知一组数据1,3,a,6,6的平均数为4,则这组数据的方差为.18.若M=(2015﹣1985)2,O=(2015﹣1985)×(2014﹣1986),N=(2014﹣1986)2,则M+N﹣2O的值为.19.如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.20.如图,在Rt△ABC中,∠C=90°,现将△ABC进行翻折,点C恰落在边AB上的点D处,折痕为EF,此时恰有∠DEF=∠A,则AD与BD的大小关系是.三、解答题(共6小题,满分66分)21.已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.22.某校为了选拔省教委组织的以"爱我省会o让节能环保称为时尚"为主题的参赛作品,现在本校组织了一次"以爱我家乡o让节能环保成为时尚"的作品征集活动,现从所收集上来的作品中随机爱抽取了一部分,按A,B,C,D四个等级进行评选,并根据评选结果绘制了如图所示的条形统计图,已知等级C的作品的所抽取作品中占25%.(1)求所抽取的作品的总份数及等级C的作品的份数,并补全条形统计图;(2)若该校供征集到800份作品.①请你估计出等级为A的作品约有多少份?②若等级为A的作品中有100份是七年级组的作品,剩下的为八、九年级组的作品,现要将这两个组的作品再进行分组来选择参赛用的作品,已知这两个组所分的组数相同,且七年级组中每组的作品比八、九年级组中每组的作品少4份,请问这两个年级组的作品中每组各多少份?23.如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.24.如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,C是线段AB的中点,连接OC,并过点A作OC的垂线,垂足为D,交x轴于点E,已知tan∠OAD=.(1)求2∠OAD的正切值;(2)若OC=.①求直线AB的解析式;②求点D的坐标.25.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.26.某公司对工作五年及以上的员工施行新的绩效考核制度,现拟定工作业绩W=P+1200,其中P的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由部分的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由两部分的和组成,一部分与x2成正比,另一部分与nx成正比,在试行过程中得到了如下两组数据:①工作12年的员工,若其工作数量为50单位,则其工作业绩为3700元;②工作16年的员工,若其工作数量为80单位,则其工作业绩为6320元.(1)试用含x和n的式子表示W;(2)若某员工的工作业绩为4080元,工作数量为40单位,求该员工的工作年限;(3)若员工的工作年限为10年,若要使其工作业绩最高,其工作数量应为多少单位?此时他的工作业绩为多少元?2015年河北省初中毕业生升学文化课考试模拟试卷(二)参考答案与试题解析一、选择题(共16小题,1-6小题每小题2分,7-16小题每小题2分,满分42分)1.2014年在进入12月份后又迎来了大幅降温提拿起,12月5日哈尔滨、沈阳、石家庄、济南的最高气温分别为﹣12°、17°、6°、5°,则这四个城市中在这天的最高气温最高的是()A.哈尔滨 B.沈阳 C.石家庄 D.济南【考点】有理数大小比较.【专题】应用题.【分析】根据有理数比较大小的法则比较出﹣12℃、17℃、6℃、5℃的大小即可.【解答】解:∵﹣12是负数,17,6,5是正数,∴17>6>5>﹣12;∴这四个城市中在这天的最高气温最高的是沈阳.故选B.【点评】本题考查的是有理数的大小比较,熟知正数都大于0;负数都小于0是解答此题的关键.2.下列四个腾讯软件图标中,属于轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列无理数中,不是介于﹣3与2之间的是()A.﹣ B. C.﹣ D.【考点】估算无理数的大小.【分析】分别得出各数的取值范围,进而得出答案.【解答】解:A、﹣3<﹣<﹣2,故介于﹣3与2之间,不合题意;B、2<<3,不介于﹣3与2之间,符合题意,C、﹣2<﹣<﹣1,故介于﹣3与2之间,不合题意;D、1<<2,故介于﹣3与2之间,不合题意;故选;B.【点评】此题主要考查了估计无理数的大小,正确估计无理数的取值范围是解题关键.4.如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35° B.45° C.55° D.65°【考点】垂线.【分析】先根据邻补角关系求出∠2=35°,再由垂线得出∠COD=90°,最后由互余关系求出∠3=90°﹣∠2.【解答】解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°;故选:C.【点评】本题考查了垂线和邻补角的定义;弄清两个角之间的互补和互余关系是解题的关键.5.已知直线l与半径为2的⊙O的位置关系是相离,则点O到直线l的距离的取值范围在数轴上的表示正确的是()A. B. C. D.【考点】直线与圆的位置关系;在数轴上表示不等式的解集.【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;可求出点O到直线l的距离的取值范围,进而得到答案.【解答】解:∵l与半径为2的⊙O的位置关系是相离,∴点O到直线l的距离的取值范围d>2.故选A.【点评】本题考查直线与圆位置关系的定义,①当直线与圆心的距离小于半径,直线与圆相交;②当直线与圆心的距离大于半径,直线与圆相离,③当直线与圆心的距离等于半径,直线与圆相切.6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.20【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:设有20元的红包x个,根据题意得:=,解得:x=16,故选C.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.7.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】如图,过点D作DE⊥BC于点E.利用角平分的性质得到DE=AD=3,然后由三角形的面积公式来求△BCD的面积.【解答】解:如图,过点D作DE⊥BC于点E.∵∠A=90°,∴AD⊥AB.∴AD=DE=3.又∵BC=5,∴S△BCD=BCoDE=×5×3=7.5.故选:A.【点评】本题考查了角平分线的性质.角的平分线上的点到角的两边的距离相等.8.已知a=+2,b=﹣2,则(﹣)÷的值为()A.1 B. C. D.【考点】分式的化简求值.【分析】先利用分配律计算,再算加法,约分化简.最后代入求值即可.【解答】解:原式===;∵a﹣b==4,∴原式=;故选:B.【点评】本题考查了分式的化简求值;本题利用分配律计算简便,注意约分.9.若一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,则a+3b的值为()A.136 B.268 C. D.【考点】解一元二次方程-配方法.【分析】利用配方法求出x的值,再根据一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,求出a和b的值,再代入要求的式子即可得出答案.【解答】解:∵9x2﹣12x﹣39996=0,∴9(x﹣)2=40000,∴x1=,x2=﹣66,∵一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,∴a=﹣66,b=,a+3b=﹣66+202=136.故选A.【点评】本题考查了解一元二次方程﹣配方法:先把一元二次方程的二次项的系数化为1和常数项移到方程右边,再方把方程两边加上一次项系数的一半,这样方程左边配成了完全平方式,然后利用直接开平方法解方程.10.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A.20m B.25m C.30m D.35m【考点】菱形的性质.【专题】应用题.【分析】根据题意和正六边形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长.【解答】解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m),故选:C.【点评】此题考查了菱形的性质,用到的知识点是等边三角形的判定与性质、菱形的性质和正六边形的性质,关键是根据题意作出辅助线,找出等边三角形.11.已知∠BOP与OP上点C,点A(在点C的右边),李玲现进行如下操作:①以点O为圆心,OC长为半径画弧,交OB于点D,连接CD;②以点A为圆心,OC长为半径画弧MN,交OA于点M;③以点M为圆心,CD长为半径画弧,交弧MN于点E,连接ME,操作结果如图所示,下列结论不能由上述操作结果得出的是()A.CD∥ME B.OB∥AE C.∠ODC=∠AEM D.∠ACD=∠EAP【考点】作图-复杂作图.【分析】证明△OCD≌△AME,根据平行线的判定定理即可得出结论.【解答】解:在△OCD和△AME中,,∴△OCD≌△AME(SSS),∴∠DCO=∠EMA,∠O=∠OAE,∠ODC=∠AEM.∴CD∥ME,OB∥AE.故A、B、C都可得到.∵△OCD≌△AME,∴∠DCO=∠AME,则∠ACD=∠EAP不一定得出.故选D.【点评】本题考查了尺规作图,根据图形的作法得到相等的线段,证明△OCD≌△AME是关键.12.王芳将如图所示的三条水平直线m1,m2,m3的其中一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2﹣6ax﹣3,则她所选择的x轴和y轴分别为()A.m1,m4 B.m2,m3 C.m3,m6 D.m4,m5【考点】二次函数的图象.【专题】数形结合.【分析】由抛物线开口向上可知a>0,将抛物线配方为y=a(x﹣3)2﹣3﹣9a,可得抛物线的对称轴为x=3,顶点纵坐标为﹣3﹣9a,据此结合图象可得答案.【解答】解:∵抛物线y=ax2﹣6ax﹣3的开口向上,∴a>0,∵y=ax2﹣6ax﹣3=a(x﹣3)2﹣3﹣9a,∴抛物线的对称轴为直线x=3,∴应选择的y轴为直线m4;∵顶点坐标为(3,﹣3﹣9a),抛物线y=ax2﹣6ax﹣3与y轴的交点为(0,﹣3),而﹣3﹣9a<﹣3,∴应选择的x轴为直线m1,故选A.【点评】本题考查了二次函数的图象,理解掌握二次函数的图象与各系数的关系是解题的关键,同时注意数形结合思想的运用.13.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为()A.125° B.130° C.135° D.140°【考点】旋转的性质.【分析】如图,作辅助线;首先证明∠AA′C=45°,然后证明AB′2=AA′2+A′B′2,得到∠AA′B′=90°,进而得到∠A′=135°,即可解决问题.【解答】解:如图,连接AA′.由题意得:AC=A′C,A′B′=AB,∠ACA′=90°,∴∠AA′C=45°,AA′2=22+22=8;∵AB′2=32=9,A′B′2=12=1,∴AB′2=AA′2+A′B′2,∴∠AA′B′=90°,∠A′=135°,故选C.【点评】该题主要考查了旋转变换的性质、勾股定理的逆定理及其应用问题;解题的关键是作辅助线,将分散的条件集中.14.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056 D.1.1111111×1017【考点】因式分解-运用公式法;科学记数法-表示较大的数.【专题】规律型.【分析】根据题意得出一般性规律,写出第8个等式,利用平方差公式计算,将结果用科学记数法表示即可.【解答】解:根据题意得:第⑧个式子为5555555552﹣4444444452=(555555555+444444445)×(555555555﹣444444445)=1.1111111×1017.故选D.【点评】此题考查了因式分解﹣运用公式法,以及科学记数法﹣表示较大的数,熟练掌握平方差公式是解本题的关键.15.如图,在△ABC中,BC=5,D、E分别是AB、AC上的点,连接DE,有DE=3且DE∥BC,现有将△ABC沿BC平移一段距离得到△A′B′C′,A′B′与AC交于点F,并测得∠A′FE=131°,D,E的对应点分别是D′,E′,3S四边形B′CED′=S四边形BC′E′D,则下列说法不正确的是()A.∠A=49° B.四边形CC′E′E是平行四边形C.B′C=DE D.S△ABC=5S△D′FE【考点】平移的性质.【专题】计算题.【分析】根据平移的性质得到AC∥A′C′,∠A=∠A′,则利用平行线的性质可计算出∠A′=49°,则∠A=49°;加+x)oh,解得x=2,B′C=3,则B′C=DE;设点F与DE的距离为h′,点A到BC的距离为h1,根据平行线分线段成比例定理,由D′E∥B′C,==,则h=6h′,由DE∥BC得到==,则h=h1,所以h′=h1,然后根据三角形面积公式得到==.【解答】解:∵△ABC沿BC平移一段距离得到△A′B′C′,∴AC∥A′C′,∠A=∠A′,∴∠A′+∠A′FE=180°,∴∠A′=180°﹣131°=49°,∴∠A=49°,所以A选项的说法正确;∵DE∥BC,∴四边形CC′E′E是平行四边形,所以B选项的说法正确;设BB′=x,DE与BC的距离为h,则DD′=x,B′C=5﹣x,BC′=5+x,DE′=3+x,D′E=3﹣x,∵3S四边形B′CED′=S四边形BC′E′D,∴3o(3﹣x+5﹣x)oh=(3+x+5+x)oh,解得x=2,∴B′C=5﹣2=3,∴B′C=DE,所以C选项的说法正确;设点F与DE的距离为h′,点A到BC的距离为h1,∵D′E∥B′C,∴===,∴h=6h′,∵DE∥BC,∴==,∴h=h1,∴h1=6h′,即h′=h1,∴===,所以D选项的说法错误.故选D.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行线分线段成比例定理.16.如图,双曲线y=与y=﹣分别为一第一、第四象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于点D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,﹣);③△ABC的面积为定值7,正确的有()A.1个 B.2个 C.3个 D.4个【考点】反比例函数的性质;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】根据函数图象所在象限可得k>0,根据反比例函数的性质可得①正确;再根据函数解析式结合点B的横坐标为3,可得纵坐标,然后再根据4BD=3CD可得C点坐标;再利用C点坐标,根据图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k的值;首先表示出B,C点坐标,进而得出BC的长,即可得出△ABC的面积【解答】解:①∵双曲线y=在第一象限,∴k>0,∴在每个象限内,y随x的增大而减小,故①正确;②∵点B的横坐标为3,∴y=﹣=﹣1,∴BD=1,∵4BD=3CD,∴CD=,∴点C的坐标为(3,),故②错误;③设B点横坐标为:x,则其纵坐标为:﹣,故C点纵坐标为:,则BC=+=,则△ABC的面积为:×x×=3.5,故此选项错误.故选:A.【点评】考查了反比例函数的性质,反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大二、填空题(共4小题,每小题3分,满分12分)17.已知一组数据1,3,a,6,6的平均数为4,则这组数据的方差为3.6.【考点】方差;算术平均数.【分析】先根据平均数的计算公式求出a的值,再根据方差公式进行计算即可.【解答】解:∵数据1,3,a,6,6的平均数为4,∴(1+3+a+6+6)÷5=4,∴a=4,∴这组数据的方差为:[(1﹣4)2+(3﹣4)2+(4﹣4)2+(6﹣4)2+(6﹣4)2]=3.6;故答案为:3.6.【点评】此题考查了方差和平均数,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.若M=(2015﹣1985)2,O=(2015﹣1985)×(2014﹣1986),N=(2014﹣1986)2,则M+N﹣2O的值为4.【考点】因式分解-运用公式法.【分析】根据已知将各数据代入进而利用完全平方公式求出即可.【解答】解:∵M=(2015﹣1985)2,O=(2015﹣1985)×(2014﹣1986),N=(2014﹣1986)2,∴M+N﹣2O=(2015﹣1985)2﹣2(2015﹣1985)×(2014﹣1986)+(2014﹣1986)2=[(2015﹣1985)﹣(2014﹣1986)]2=4.故答案为:4.【点评】此题主要考查了公式法分解因式,熟练应用完全平方公式是解题关键.19.如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为6﹣3.【考点】切线的性质;矩形的性质.【分析】过O点作GH⊥BC于G,交BE于H,连接OB、OE,根据BE=AB=3,结合切线的性质得出BG=BE=3,通过解直角三角形求得GH=,BH=2,设OG=OE=x,则EH=2﹣3,OH=﹣x,根据勾股定理列出(2﹣3)2+x2=(﹣x)2从而求得x=6﹣3,即可求得⊙O的半径为6﹣3.【解答】解:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE⊥BH,∴BG=BE,∵△ABE为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴GH=,BH=2,设OG=OE=x,则EH=2﹣3,OH=﹣x,在RT△OEH中,EH2+OE2=OH2,即(2﹣3)2+x2=(﹣x)2解得x=6﹣3∴⊙O的半径为6﹣3.故答案为:6﹣3.【点评】本题考查了矩形的性质,正方形的判定和性质,切线的性质等,作出辅助线证得四边形OGCH是正方形是解题的关键.20.如图,在Rt△ABC中,∠C=90°,现将△ABC进行翻折,点C恰落在边AB上的点D处,折痕为EF,此时恰有∠DEF=∠A,则AD与BD的大小关系是AD=BD.【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先证明D、E、C、F四点共圆,得到∠DEF=∠DCF;进而证明∠DCF=∠A,得到DA=DC;其次证明DB=DC,即可解决问题.【解答】解:如图,连接CD;由题意得:∠EDF=∠ECF,∴∠EDF+∠ECF=180°,∴D、E、C、F四点共圆,∴∠DEF=∠DCF;而∠DEF=∠A,∴∠DCF=∠A(设为α),DA=DC;∵∠B+α=∠BCD+α=90°,∴∠B=∠BCD,∴DB=DC,DA=DB,故答案为:AD=BD.【点评】该题主要考查了旋转变换的性质、四点共圆的判定、等腰三角形的判定等知识点的应用问题;解题的关键是作辅助线.三、解答题(共6小题,满分66分)21.已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)根据绝对值的性质求出tanA及sinB的值,再根据特殊角的三角函数值求出∠A及∠B的度数,进而可得出结论;(2)根据(1)中∠A及∠B的值求出∠C的数,再把各特殊角的三角函数值代入进行计算即可.【解答】解:(1)∵(1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,或者∠A=45°,∠B=120°,∠C=180°﹣45°﹣120°=15°,∴△ABC是锐角三角形或钝角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1,=.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.22.某校为了选拔省教委组织的以"爱我省会o让节能环保称为时尚"为主题的参赛作品,现在本校组织了一次"以爱我家乡o让节能环保成为时尚"的作品征集活动,现从所收集上来的作品中随机爱抽取了一部分,按A,B,C,D四个等级进行评选,并根据评选结果绘制了如图所示的条形统计图,已知等级C的作品的所抽取作品中占25%.(1)求所抽取的作品的总份数及等级C的作品的份数,并补全条形统计图;(2)若该校供征集到800份作品.①请你估计出等级为A的作品约有多少份?②若等级为A的作品中有100份是七年级组的作品,剩下的为八、九年级组的作品,现要将这两个组的作品再进行分组来选择参赛用的作品,已知这两个组所分的组数相同,且七年级组中每组的作品比八、九年级组中每组的作品少4份,请问这两个年级组的作品中每组各多少份?【考点】条形统计图;用样本估计总体.【专题】计算题.【分析】(1)根据C占的百分比求出A,B,D占的百分比之和,由A,B,D份数之和除以占的百分比求出总份数,即可确定出C的份数,补全条形统计图即可;(2)①利用总数800乘以对应的比例即可求解;②设七年级组分成的组中有x人,八、九年级每组有(x+4)人,根据两个组分成的小组数相同,即可列方程求解.【解答】解:(1)根据题意得:(36+48+6)÷(1﹣25%)=120(份);等级C的作品的份数为30份,补全统计图,如图所示;(2)①根据题意得:800×=240(份),则等级A的作品约有240份;②设七年级组分成的组中有x份,八、九年级每组有(x+4)份,根据题意得:=,解得:x=10,则七年级组的作品每组有10份,八、九年级组的作品有14份.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【考点】正方形的性质;全等三角形的判定与性质;菱形的判定;旋转的性质.【分析】(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;(2)由条件可证明△ANB≌△CFB,可得BN=BF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.【解答】(1)证明:过F作FH⊥BE,∵四边形ABCD为正方形,∴∠ABC=∠BCD=90°,∴∠FHB=∠HBC=∠BCF=90°,∴四边形BCFH为矩形,∴BH=CF,又∵BF=EF,∴BE=2BH,∴BE=2CF;(2)解:四边形BFGN为菱形,证明如下:∵MN⊥EF,∴∠E+∠EBM=90°,且∠EBM=∠ABN,∴∠ABN+∠E=90°,∵BF=EF,∴∠E=∠EBF,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF,∵四边形ABCD为正方形,∴AB=BC,∠NAB=∠CBF=90°,在△ABN和△CBF中∴△ABN≌△CBF(ASA),∴BF=BN,又由旋转可得EF=FG=BF,∴BN=FG,∵∠GFM=∠BME=90°,∴BN∥FG,∴四边形BFGN为菱形.【点评】本题主要考查正方形的性质及全等三角形的判定和性质,掌握正方形的四边相等、四个角都是直角是解题的关键.在(2)中证得BN=FG是解题的关键.24.如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,C是线段AB的中点,连接OC,并过点A作OC的垂线,垂足为D,交x轴于点E,已知tan∠OAD=.(1)求2∠OAD的正切值;(2)若OC=.①求直线AB的解析式;②求点D的坐标.【考点】一次函数综合题.【分析】(1)设DE=k.根据同角的余角相等得出∠OAD=∠DOE=90°﹣∠AOD,由正切函数定义得到==,那么OD=2k,AD=4k.由勾股定理得OA==2k,那么OE=OA=k.根据直角三角形斜边上的中线等于斜边的一半得出OC=AB=BC,由等边对等角得到∠COB=∠OBC,根据三角形外角的性质得出∠ACD=∠COB+∠OBC=2∠OAD.然后求出OB=2OA=4k,AB==10k,OC=AB=5k,那么CD=OC﹣OD=3k,于是tan(2∠OAD)=tan∠ACD===;(2)①由OC=5k=,得出k=,再求出OA=2k=2,OB=2OA=4,得到A(0,2),B(4,0).然后设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法即可求解;②过D作DF⊥x轴于点F.由DF∥AO,根据平行线分线段成比例定理得出==,即==,求出DF=,EF=,那么OF=OE﹣EF=,于是得到点D的坐标为(,).【解答】解:(1)设DE=k.∵∠AOE=∠ADO=90°,∴∠OAD=∠DOE=90°﹣∠AOD,∴tan∠OAD=tan∠DOE=,∴==,∴OD=2DE=2k,AD=2OD=4k.在Rt△AOD中,由勾股定理得OA===2k,∵tan∠OAD==,∴OE=OA=k.∵在Rt△AOB中,C是线段AB的中点,∴OC=AB=BC,∴∠COB=∠OBC,∴∠OAD=∠DOE=∠COB=∠OBC,∴∠ACD=∠COB+∠OBC=2∠OAD.∵在Rt△AOB中,tan∠OBA=tan∠OAD=,∴=,∴OB=2OA=4k,∴AB===10k,∴OC=AB=5k,∴CD=OC﹣OD=5k﹣2k=3k,∴tan(2∠OAD)=tan∠ACD===;(2)①∵OC=5k=,∴k=,∴OA=2k=2,OB=2OA=4,∴A(0,2),B(4,0).设直线AB的解析式为y=mx+n,则,解得,∴直线AB的解析式为y=﹣x+2;②如图,过D作DF⊥x轴于点F.∵DF∥AO,∴==,即==,∴DF=k=×=,EF=k=×=,∴OF=OE﹣EF=k﹣=×﹣=,∴点D的坐标为(,).【点评】本题是一次函数的综合题,其中涉及到运用待定系数法求一次函数的解析式,余角的性质,锐角三角函数的定义,勾股定理,直角三角形、等腰三角形的性质,三角形外角的性质,平行线分线段成比例定理等知识,综合性较强,难度适中.设DE=k,用含k的代数式表示出AD与CD是解题的关键.25.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.【考点】面积及等积变换.【分析】问题引入:由D是BC上一点,AE=AD,根据等高三角形的面积比等于对应底的比,可得:,,继而求得答案;尝试探究:由AF⊥BC,EG⊥BC,易证得△EDG∽△ADB,然后由相似三角形的性质,求得的值,再利用等底三角形的面积比等于对应高的比,即可求得的值,继而求得的值;类比延伸:由E为AD上的任一点,根据等高三角形的面积比等于对应底的比,即可求得=,=,继而求得答案;拓展应用:由==,同理可得=,=,继而求得答案.【解答】解:问题引入:∵在△ABC中,D是BC上一点,AE=AD,∴,,∴==;尝试探究:∵AE=AD,∴=,∵AF⊥BC,EG⊥BC,∴AF∥EG,∴△EDG∽△ADB,∴=;∵===,∴=1﹣=;故答案为:,,;类比延伸:=,∵E为AD上的一点,∴=,=,∴==;拓展应用:∵==,同理:=,=,∴==2.【点评】此题考查了面积与等积变换的知识.此题难度较大,注意掌握数形结合思想的应用.26.某公司对工作五年及以上的员工施行新的绩效考核制度,现拟定工作业绩W=P+1200,其中P的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由部分的大小与工作数量x(单位)和工作年限n有关(不考虑其他因素).已知P由两部分的和组成,一部分与x2成正比,另一部分与nx成正比,在试行过程中得到了如下两组数据:①工作12年的员工,若其工作数量为50单位,则其工作业绩为3700元;②工作16年的员工,若其工作数量为80单位,则其工作业绩为6320元.(1)试用含x和n的式子表示W;(2)若某员工的工作业绩为4080元,工作数量为40单位,求该员工的工作年限;(3)若员工的工作年限为10年,若要使其工作业绩最高,其工作数量应为多少单位?此时他的工作业绩为多少元?【考点】二次函数的应用.【分析】(1))根据P由两部分的和组成,一部分与x2成正比,另一部分与nx成比,设w=k1x2+k2onx+1200,利用待定系数法求得两个比例系数后即可确定有关w的函数关系式;(2)代入w=4080,x=80求得n的长即可;(3)代入n=10后得到有关w与x的二次函数求得最值即可.【解答】解:(1)∵P由两部分的和成,一部分与x2成正比,另一部分与nx成比,∴设w=k1x2+k2onx+1200,∵工作12年的员工,若其工作数量为50单位,则其工作业绩为3700元;工作16年的员工,若其工作数量为80单位,则其工作业绩为6320元,∴,解得:,∴w=﹣x2+5nx+1200;(2)由题意得:4080=﹣×402+5n×40+1200,解得:n=16,∴该员工的工作年限为16年;(3)当n=10时,w=﹣x2+5×10x+1200=﹣(x﹣125)2+4325,所以若员工的工作年限为10年,若要使其工作业绩最高,其工作数量应为125单位,此时他的工作业绩为4325元.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度中等.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。