资源资源简介:
免费2017年中考数学一轮《不等式》含解析考点分类汇编不等式一、选择题1.a是任意实数,下列各式正确的是()A.3a>4a B. C.a>﹣a D.2.不等式2x+5>4x﹣1的正整数解是()A.0、1、2 B.1、2 C.1、2、3 D.x<33.若代数式3x+4的值不大于0,则x的取值范围是()A.x<﹣ B.x≤﹣ C.x< D.x≥4.下列结论:①4a>3a;②4+a>3+a;③4﹣a>3﹣a中,正确的是()A.①② B.①③ C.②③ D.①②③5.一次不等式组的解是()A.x>﹣3 B.x<2 C.2<x<3 D.﹣3<x<26.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤87.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0 B.a>1 C.a<0 D.a<18.已知关于x的不等式组的解集为3≤x<5,则的值为()A.﹣2 B.﹣ C.﹣4 D.﹣9.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<210.有一种足球是由32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x块,则黑皮有(32﹣x)块,每块白皮有六条边,共6x边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x条边.要求出白皮、黑皮的块数,列出的方程正确的是()A.3x=32﹣x B.3x=5(32﹣x) C.5x=3(32﹣x) D.6x=32﹣x二、填空题11.按下列程序进行运算(如图)规定:程序运行到"判断结果是否大于244"为一次运算.若x=5,则运算进行次才停止;若运算进行了5次才停止,则x的取值范围是.12.若不等式组的解集是﹣1<x<2,则a=.13.关于x的不等式组有三个整数解,则a的取值范围是.14.已知三角形的两边为3和4,则第三边a的取值范围是.15.已知函数y=2x﹣3,当x时,y≥0;当x时,y<5.三、解答题16.求不等式组的整数解,并在数轴上表示出来.17.小王和小赵原有存款分别为800元和1800元,从本月开始小王每月存款400元,小赵每月存款200元,如果设两人存款时间为x月,小王存款为y1元,小赵存款为y2元.(1)写出y1,y2的函数关系式;(2)到第x个月时,讨论两人存款额的大小.18.列不等式解应用题:小颖准备用21元钱买笔和笔记本,已知每支笔3元,每本笔记本2.2元,她买了2本笔记本.请你帮她算一算,她最多还可以买几支笔?19.把一篮苹果分给几个学生,如果每人分4个,则剩下3个;如果每人分6个,则最后一个学生最多得2个.求学生人数和苹果数.20.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?21.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?不等式参考答案与试题解析一、选择题1.a是任意实数,下列各式正确的是()A.3a>4a B. C.a>﹣a D.【考点】不等式的性质.【分析】根据不等式的基本性质或举出反例进行解答.【解答】解:A、当a≤0时,不等式3a>4a不成立.故选项A错误;B、当a=0时,不等式不成立.故选项B错误;C、当a≤0时,不等式a>﹣a不成立.故选项C错误;D、在不等式1>﹣的两边同时减去a,不等式仍然成立,即.故选项D正确;故选D.【点评】主要考查了不等式的基本性质."0"是很特殊的一个数,因此,解答不等式的问题时,应密切关注"0"存在与否,以防掉进"0"的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.不等式2x+5>4x﹣1的正整数解是()A.0、1、2 B.1、2 C.1、2、3 D.x<3【考点】一元一次不等式的整数解.【专题】计算题.【分析】移项合并后,将x系数化为1求出不等式的解集,找出解集中的正整数解即可.【解答】解:不等式2x+5>4x﹣1,移项合并得:﹣2x>﹣6,解得:x<3,则不等式的正整数解为1,2.故选B【点评】此题考查了一元一次不等式的整数解,求出不等式的解集是解本题的关键.3.若代数式3x+4的值不大于0,则x的取值范围是()A.x<﹣ B.x≤﹣ C.x< D.x≥【考点】解一元一次不等式.【分析】先根据题意列出不等式,再根据不等式的基本性质求出其解集即可.【解答】解:根据题意得:3x+4≤0,解得x≤﹣.故选B.【点评】本题把判断代数式值的范围问题要转化为解不等式的问题,解答此题的关键是利用不等式的基本性质求不等式的解集.4.下列结论:①4a>3a;②4+a>3+a;③4﹣a>3﹣a中,正确的是()A.①② B.①③ C.②③ D.①②③【考点】不等式的性质.【专题】计算题.【分析】①举一个反例,例如a=0时,4a=3a,故4a不一定大于3a,故①错误;②由4大于3,利用不等式的性质在不等式两边都加上a,得到4+a>3+a,故②正确;③由4大于3,利用不等式的性质在不等式减去都加上a,得到4﹣a>3﹣a,故③正确.【解答】解:①当a=0时,4a=3a,故①错误;②由4>3,利用不等式的性质左右两边都加上a,得到4+a>3+a,故②正确;③由4>3,利用不等式的性质左右两边都减去a,得到4﹣a>3﹣a,故③正确,则正确的是②③.故选C.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.5.一次不等式组的解是()A.x>﹣3 B.x<2 C.2<x<3 D.﹣3<x<2【考点】解一元一次不等式组.【分析】先求出每个不等式的解,再求其公共部分.【解答】解:不等式组,由①得,x<2,由②得,x>﹣3,∴2<x<3,故选D.【点评】注意各个不等式的解集的公式部分就是这个不等式组的解集.6.如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8【考点】解一元一次不等式组.【专题】计算题.【分析】根据不等式取解集的方法,大大小小无解,可知m和8之间的大小关系,求出m的范围即可.【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.【点评】本题考查不等式解集的表示方法,根据大大小小无解,也就是没有中间(公共部分)来确定m的范围.做题时注意m=8时也满足不等式无解的情况.7.已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0 B.a>1 C.a<0 D.a<1【考点】解一元一次不等式.【分析】化系数为1时,不等号方向改变了,利用不等式基本性质可知1﹣a<0,所以可解得a的取值范围.【解答】解:∵不等式(1﹣a)x>2的解集为x<,又∵不等号方向改变了,∴1﹣a<0,∴a>1;故本题选B.【点评】解不等式要依据不等式的基本性质:在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8.已知关于x的不等式组的解集为3≤x<5,则的值为()A.﹣2 B.﹣ C.﹣4 D.﹣【考点】解一元一次不等式组;二元一次方程组的解.【专题】计算题.【分析】先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.【解答】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=﹣2.故选A.【点评】本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.9.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.【点评】此题考查的是一元一次方程的解法,将x用含m的代数式来表示,根据x的取值范围可求出m的取值范围.10.有一种足球是由32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x块,则黑皮有(32﹣x)块,每块白皮有六条边,共6x边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x条边.要求出白皮、黑皮的块数,列出的方程正确的是()A.3x=32﹣x B.3x=5(32﹣x) C.5x=3(32﹣x) D.6x=32﹣x【考点】由实际问题抽象出一元一次方程.【专题】几何图形问题.【分析】本题中的相等关系是:黑皮块数:白皮块数=3:5,即3×白皮块数=5×黑皮块数,根据这个相等关系,就可以列出方程.【解答】解:设白皮有x块,则黑皮有(32﹣x)块,根据等量关系列方程得:3x=5(32﹣x).故选B.【点评】列方程解应用题的关键是找出题目中的相等关系.二、填空题11.按下列程序进行运算(如图)规定:程序运行到"判断结果是否大于244"为一次运算.若x=5,则运算进行4次才停止;若运算进行了5次才停止,则x的取值范围是2<x≤4.【考点】一元一次不等式组的应用.【专题】图表型.【分析】把x=5代入代数式求值,与244比较,若大于244,就停止计算,若结果没有大于244,重新计算直至大于244为止,根据运算顺序得到第4次的运算结果和第5次的运算结果,让第4次的运算结果小于244,第5次的运算结果大于244列出不等式求解即可.【解答】解:(1)x=5.第一次:5×3﹣2=13第二次:13×3﹣2=37第三次:37×3﹣2=109第四次:109×3﹣2=325>244→→→停止(2)第1次,结果是3x﹣2;第2次,结果是3×(3x﹣2)﹣2=9x﹣8;第3次,结果是3×(9x﹣8)﹣2=27x﹣26;第4次,结果是3×(27x﹣26)﹣2=81x﹣80;第5次,结果是3×(81x﹣80)﹣2=243x﹣242;∴由(1)式子得:x>2,由(2)式子得:x≤4∴2<x≤4.即:5次停止的取值范围是:2<x≤4.故答案为:4;2<x≤4.【点评】考查一元一次不等式组的应用;根据第4次和第5次的运算结果得到关系式是解决本题的关键.12.若不等式组的解集是﹣1<x<2,则a=﹣1.【考点】解一元一次不等式组.【专题】计算题.【分析】先解不等式组,用含a的代数式表示解集,然后根据题意列方程即可求得a值.【解答】解:解不等式组得a<x<2∵﹣1<x<2∴a=﹣1.故答案为:﹣1.【点评】主要考查了不等式组的解的定义.此题型一般是把含有字母的不等式组用字母的代数式表示出其解集,然后对照其给出的实际解集列方程求解.13.关于x的不等式组有三个整数解,则a的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解;不等式的性质;解一元一次不等式;解一元一次不等式组.【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集8<x<2﹣4a,根据已知得出11<2﹣4a≤12,求出即可.【解答】解:,由①得:x>8,由②得:x<2﹣4a,∴不等式组的解集是8<x<2﹣4a,∵关于x的不等式组有三个整数解,即9,10,11,∴11<2﹣4a≤12,解得:﹣≤a<﹣.故答案为:﹣≤a<﹣.【点评】本题主要考查对解一元一次不等式(组),不等式的性质,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集和已知得出11<2﹣4a≤12是解此题的关键.14.已知三角形的两边为3和4,则第三边a的取值范围是1<a<7.【考点】三角形三边关系.【专题】计算题.【分析】已知两边的值,则第三边的范围是:大于两边的差,而小于两边的和.【解答】解:根据三角形的三边关系,得4﹣3<a<4+3,即1<a<7.故答案为:1<a<7.【点评】本题需要记住已知两边求第三边的范围的方法,即可求解此题.15.已知函数y=2x﹣3,当x≥时,y≥0;当x<4时,y<5.【考点】一次函数的性质.【专题】探究型.【分析】先根据y≥0得出关于x的不等式,求出x的取值范围;再根据y<5得出关于x的不等式,求出x的取值范围即可.【解答】解:∵y=2x﹣3且y≥0,∴2x﹣3≥0,∴x≥;∵y<5,∴2x﹣3<5,∴x<4.故答案为:≥;<4.【点评】本题考查的是一次函数的性质,根据题意得出关于x的不等式是解答此题的关键.三、解答题16.求不等式组的整数解,并在数轴上表示出来.【考点】一元一次不等式组的整数解.【分析】首先分别解两个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的非负整数解即可.【解答】解:,由①得:x>﹣2,由②得:x≤6,∴不等式组的解集是:﹣2<x≤6.∴整数解是:﹣1,0,1,2,3,4,5,6.在数轴上表示出来为:.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.小王和小赵原有存款分别为800元和1800元,从本月开始小王每月存款400元,小赵每月存款200元,如果设两人存款时间为x月,小王存款为y1元,小赵存款为y2元.(1)写出y1,y2的函数关系式;(2)到第x个月时,讨论两人存款额的大小.【考点】一次函数的应用.【分析】(1)小王和小赵的存款数y与时间x成一次函数关系,根据题干条件即可直接写出y1,y2的函数关系式;(2)首先令y1=y2,求出两人存款相同时x的值,然后比较x与5的关系,进而比较出y1和y2的大小.【解答】解:(1)根据题意,得y1=800+400x,y2=1800+200x,(2)令y1=y2,即800+400x=1800+200x,得x=5,1、当x<5,y1<y2,即当存款时间不到5个月时,小王存款小于小赵的存款;2、当x=5,y1=y2,即当存款时间为5个月时,小王存款等于小赵的存款;3、当x>5y1>y2,即当存款时间不到5个月时,小王存款大于小赵的存款.【点评】本题主要考查一次函数的应用的知识点,解答本题的关键是求出y1,y2的函数关系式,然后比较两人存款的多少,本题比较基础,很简单.18.列不等式解应用题:小颖准备用21元钱买笔和笔记本,已知每支笔3元,每本笔记本2.2元,她买了2本笔记本.请你帮她算一算,她最多还可以买几支笔?【考点】一元一次不等式的应用.【分析】总用钱数不能超过实有钱数,所以关系式为:2本笔记本价钱+笔的总价钱≤21.【解答】解:设她还可以买x支笔.2×2.2+3x≤21,解得3x≤16.6,x≤5.53答:她最多还可以买5支笔.【点评】找到合适的关系式是解决问题的关键,注意总用钱数不能超过实有钱数.19.把一篮苹果分给几个学生,如果每人分4个,则剩下3个;如果每人分6个,则最后一个学生最多得2个.求学生人数和苹果数.【考点】一元一次不等式的应用.【专题】应用题.【分析】设学生人数为x人,则苹果有(4x+3)个,依题意得6(x﹣1)≤(4x+3)≤6(x﹣1)+2,解不等式组,取最小的整数即可解决问题.【解答】解:设学生人数为x人,则苹果有(4x+3)个,依题意得,解之,得,3.5≤x≤4.5,∵学生人数应该为整数,∴x=4,∴苹果数为:4×4+3=19(个),答:学生4名,苹果19个.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.注意本题的不等关系为:每人分6个,则最后一个学生最多得2个.20.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?【考点】一元一次不等式组的应用;一元一次方程的应用.【专题】工程问题.【分析】(1)设单独租用35座客车需x辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y辆,则租55座客车(4﹣y)辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解.【解答】解:(1)设单独租用35座客车需x辆.由题意得:35x=55(x﹣1)﹣45,解得:x=5.∴35x=35×5=175(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车(4﹣y)辆.由题意得:,解这个不等式组,得∵y取正整数,∴y=2.∴4﹣y=4﹣2=2.∴租金为:320×2+400×2=1440(元).答:本次社会实践活动所需车辆的租金为1440元.【点评】本题考查了一元一次方程的应用和一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.21.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【考点】一元一次不等式的应用;一次函数的应用.【专题】压轴题.【分析】(1)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数=3600;(2)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数≤4200;(3)关系式为:甲种鱼的尾数×0.9+乙种鱼的尾数×95%≥6000×93%.【解答】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.由题意得:0.5x+0.8(6000﹣x)=3600,解方程,可得:x=4000,∴乙种鱼苗:6000﹣x=2000,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5x+0.8(6000﹣x)≤4200,解不等式,得:x≥2000,即购买甲种鱼苗应不少于2000尾,∵甲、乙两种鱼苗共6000尾,∴乙不超过4000尾;答:购买甲种鱼苗应不少于2000尾,购买乙种鱼苗不超过4000尾;(3)设购买鱼苗的总费用为w,甲种鱼苗买了a尾,则购买乙种鱼苗(6000﹣a)尾.则w=0.5a+0.8(6000﹣a)=﹣0.3a+4800,由题意,有a+(6000﹣a)≥×6000,解得:a≤2400,在w=﹣0.3a+4800中,∵﹣0.3<0,∴w随a的增大而减少,∴当a取得最大值时,w便是最小,即当a=2400时,w最小=4080.答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.【点评】根据费用和成活率找到相应的关系式是解决本题的关键,注意不低于是大于或等于;不超过是小于或等于.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。