资源资源简介:
免费2018年湖北省荆门市东宝区中学数学模拟试题(一)含答案试卷分析详解2018年湖北省荆门市东宝区中学数学模拟试题(一)来源:学&科&网]一、选择题(每小题3分,共36分)1.(3分)﹣2的相反数是()A.2 B. C.﹣2 D.以上都不对【解答】解:﹣2的相反数是2,故选:A.2.(3分)在函数中,自变量x的取值范围是()A.x≥﹣1 B.x>﹣1且x≠ C.x≥﹣1且x≠ D.x>﹣1【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选C.3.(3分)π、,﹣,,3.1416,0.中,无理数的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选B.4.(3分)下列计算正确的是()A.aoa2=a3 B.(a3)2=a5 C.a+a2=a3 D.a6÷a2=a3【解答】解:A、aoa2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6﹣2=a4,故本选项错误.故选A.5.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③ B.①②④ C.①③④ D.①②③④【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.6.(3分)若不等式组无解,则m的取值范围是()A.m>3 B.m<3 C.m≥3 D.m≤3【解答】解:∵不等式组无解.∴m≤3.故选D.7.(3分)在"朗读者"节目的影响下,某中学开展了"好书伴我成长"读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是2【解答】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.[来源:学科网]8.(3分)下面计算中正确的是()A.+= B.﹣= C.=﹣3 D.﹣1﹣1=1【解答】解:A、原式不能合并,错误;B、原式=3﹣2=,正确;C、原式=|﹣3|=3,错误;D、原式=﹣1,错误,[来源:学科网ZXXK]故选B9.(3分)我国"神七"在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×106【解答】解:423公里=423000米=4.23×105米.故选C.10.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故该几何体的全面积等于136.11.(3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2;⑤3a+c<0.其中正确结论的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:∵二次函数与x轴有两个交点,∴b2﹣4ac>0,故①错误,观察图象可知:当x>﹣1时,y随x增大而减小,故②正确,∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,∴x=1时,y=a+b+c<0,故③正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax2+bx+c﹣m=0没有实数根,故④正确,∵对称轴x=﹣1=﹣,∴b=2a,∵a+b+c<0,∴3a+c<0,故⑤正确,故选C.12.(3分)如图:△ADB、△BCD均为等边三角形,若点顶点A、C均在反比例函数y=上,若C的坐标点(a、),则k的值为()A.2 B.3+ C.3+2 D.2【解答】解:如图,分别过点A、C作x轴的垂线,垂足分别为E、F,设OA=OB=2x,∵△ADB、△BCD均为等边三角形,C(a、),∴AE=x,BF=1,∴A(x,x),C(2x+1,).∵A、C两点均在反比例函数的图象上,∴x2=(2x+1),解得x1=1+,x2=1﹣(不合题意),∴C(3+2,),∴k=(3+2)×=3+2.故选C.二、填空题(每小题3分,共15分)13.(3分)已知,则a+b=﹣4【解答】解:∵,∴2a+b2=0,b﹣4=0,∴a=﹣8,b=4,∴a+b=﹣4,故答案为﹣4.[来源:学|科|网Z|X|X|K]14.(3分)化简:÷(﹣1)oa=﹣a﹣1.【解答】解:原式=ooa=﹣(a+1)=﹣a﹣1,故答案为:﹣a﹣115.(3分)已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是8.【解答】解:∵关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,∴x1+x2=﹣2k,x1ox2=k2+k+3,∵△=4k2﹣4(k2+k+3)=﹣4k﹣12≥0,解得k≤﹣3,∴(x1﹣1)2+(x2﹣1)2=x12﹣2x1+1+x22﹣2x2+1=(x1+x2)2﹣2x1x2﹣2(x1+x2)+2=(﹣2k)2﹣2(k2+k+3)﹣2(﹣2k)+2=2k2+2k﹣4=2(k+)2﹣≥8,故(x1﹣1)2+(x2﹣1)2的最小值是8.故答案为:8.16.(3分)敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,现我军以7千米/小时的速度追击6小时后可追上敌军.【解答】解:设我军以7千米/小时的速度追击x小时后可追上敌军.根据题意得:7x=4(1+x)+14,解得:x=6.17.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故答案为:.三、解答题(本题共7小题,共69分)18.(7分)先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.【解答】解:原式=4﹣x2+x2+4x﹣5=4x﹣1,当x=时,原式=6﹣1=5.19.(10分)如图:△ABD和△ACE都是Rt△,其中∠ABD=∠ACE=90°,C在AB上,连接DE,M是DE中点,求证:MC=MB.【解答】证明:延长CM、DB交于G,∵△ABD和△ACE都是Rt△,∴CE∥BD,即CE∥DG,∴∠CEM=∠GDM,∠MCE=∠MGD又∵M是DE中点,即DM=EM,∴△ECM≌△DMG,∴CM=MG,∵G在DB的延长线上,∴△CBG是Rt△CBG,∴在Rt△CBG中,.20.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?[来源:学§科§网](2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.21.(10分)某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一条直线上.求:(1)楼房OB的高度;(2)小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)【解答】解:(1)在Rt△ABO中,∠BAO=60°,OA=200.…(2分)∵tan60°=,即,∴OB=OA=200(m).…(2分)(2)如图,过点C作CE⊥BO于E,CH⊥OD于H.则OE=CH,EC=OH.根据题意,知i==,可设CH=x,AH=2x.…(1分)在Rt△BEC中,∠BCE=45°,∴BE=CE,即OB﹣OE=OA+AH.∴200﹣x=200+2x.解得x=.…(1分)在Rt△ACH中,∵AC2=AH2+CH2,∴AC2=(2x)2+x2=5x2.∴AC=x=[或](m).(1分)答:高楼OB的高度为200m,小玲在山坡上走过的距离AC为m.…(1分)22.(10分)设C为线段AB的中点,四边形BCDE是以BC为一边的正方形.以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)AD=AQ;(3)BC2=CFoEG.【解答】证明:(1)连接BD,∵四边形BCDE是正方形,∴∠DBA=45°,∠DCB=90°,即DC⊥AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠DBA=45°,∴∠ADB=90°,即BD⊥AD,∵BD为半径,∴AD是⊙B的切线;(2)∵BD=BG,∴∠BDG=∠G,∵CD∥BE,∴∠CDG=∠G,∴∠G=∠CDG=∠BDG=∠BCD=22.5°,∴∠ADQ=90°﹣∠BDG=67.5°,∠AQB=∠BQG=90°﹣∠G=67.5°,∴∠ADQ=∠AQD,∴AD=AQ;(3)连接DF,在△BDF中,BD=BF,∴∠BFD=∠BDF,又∵∠DBF=45°,∴∠BFD=∠BDF=67.5°,∵∠GDB=22.5°,在Rt△DEF与Rt△GCD中,∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,∴Rt△DCF∽Rt△GED,∴,又∵CD=DE=BC,∴BC2=CFoEG.23.(10分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【解答】解:由题意得:(1)50+x﹣40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)24.(12分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为150度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为PA2+PC2=PB2;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为4PA2osin2+PC2=PB2.【解答】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA==30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∴PA2+PC2=PB2,故答案为:150,PA2+PC2=PB2;(2)如图2,作将△ABP绕点A逆时针旋转120°得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=120°,P′C=PB,∴∠APP′=30°,∵∵∠PAC+∠PCA==60°,∴∠APC=120°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∵∠APP′=30°,∴PD=PA,∴PP′=PA,∴3PA2+PC2=PB2;(3)如图2,与(2)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°﹣,∵∵∠PAC+∠PCA=,∴∠APC=180°﹣,∴∠P′PC=(180°﹣)﹣(90°﹣)=90°,∴PP′2+PC2=P′C2,∵∠APP′=90°﹣,∴PD=PAocos(90°﹣)=PAosin,∴PP′=2PAosin,∴4PA2sin2+PC2=PB2,故答案为:4PA2sin2+PC2=PB2.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。