资源资源简介:
免费【真题】2017年北京市中考数学试卷含考点分类汇编详解一、选择题(本题共30分,每小题3分)1.如图所示,点到直线的距离是()A.线段的长度B.线段的长度C.线段的长度D.线段的长度【答案】B.【解析】试题分析:由点到直线的距离定义,即垂线段的长度可得结果故选B.考点:点到直线的距离定义2.若代数式有意义,则实数的取值范围是()A.B.C.D.【答案】D.考点:分式有意义的条件3.右图是某个几何题的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A.【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图4.实数在数轴上的对应点的位置如图所示,则正确的结论是()A.B.C.D.【答案】C.考点:实数与数轴5.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A.【解析】试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误.故选A。考点:轴对称图形和中心对称图形的识别6.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.18【答案】B.【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12.故选B.考点:多边形的内角与外角7.如果,那么代数式的值是()A.-3B.-1C.1D.3【答案】C.考点:代数式求值8.下面的统计图反映了我国与"一带一路"沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《"一带一路"贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C.2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【答案】A.考点:折线统计图9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15跑过的路程大于小林前15跑过的路程D.小林在跑最后100的过程中,与小苏相遇2次【答案】D.考点:函数图象10.下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:① 当投掷次数是500时,计算机记录"钉尖向上"的次数是308,所以"钉尖向上"的概率是0.616;② 随着实验次数的增加,"钉尖向上"的频率总在0.618附近摆动,显示出一定的稳定性,可以估计"钉尖向上"的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,"钉尖向上"的概率一定是0.620.其中合理的是()A.①B.②C.①②D.①③【答案】B.【解析】试题分析:①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上"的概率不一定是0.620.错误.故选B.考点;频率估计概率二、填空题(本题共18分,每题3分)11.写出一个比3大且比4小的无理数:______________.【答案】(答案不唯一).【解析】试题分析:∵3<x<4,∴,∴9<x<16,故答案不唯一,考点:无理数的估算.12.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为____________.【答案】.考点:二元一次方程组的应用.13.如图,在中,分别为的中点.若,则.【答案】3.【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC的中点,∴,∴,∵,.考点:相似三角形的性质.14.如图,为的直径,为上的点,.若,则.【答案】25°.考点:圆周角定理15.如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由得到的过程:.【答案】将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).【解析】试题分析:观察图形即可,将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB,注意是顺时针还是逆时针旋转.考点:几何变换的类型16.下图是"作已知直角三角形的外接圆"的尺规作图过程已知:,求作的外接圆.作法:如图.(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆.请回答:该尺规作图的依据是.【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.计算:【答案】3.【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可.试题解析:原式=4×+1-2+2=2+1-2+2=3.考点:实数的运算18.解不等式组:【答案】x<2.考点:解一元一次不等式组19.如图,在中,,平分交于点.求证:.【答案】见解析.【解析】试题分析:由等腰三角形性质及三角形内角和定理,可求出∠ABD=∠C=BDC.再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC,∠A=36°∴∠ABC=∠C=(180°-∠A)=×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=×72°=36°,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠C=∠BDC,∠A=AB∴AD=BD=BC.考点:等腰三角形性质.20.数学家吴文俊院士非常重视古代数学家贾宪提出的"从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)"这一推论,他从这一推论出发,利用"出入相补"原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:,(____________+____________).易知,,_____________=______________,______________=_____________.可得.【答案】.考点:矩形的性质,三角形面积计算.21.关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求的取值范围.【答案】.(1)见解析,(2)k<0考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.22.如图,在四边形中,为一条对角线,,为的中点,连接.(1)求证:四边形为菱形;(2)连接,若平分,求的长.【答案】(1)证明见解析.(2).【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.试题解析:(1)证明:∵E为AD中点,AD=2BC,∴BC=ED,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=2BE,∠ABD=90°,AE=DE∴BE=ED,∴四边形ABCD是菱形.(2)∵AD∥BC,AC平分∠BAD∴∠BAC=∠DAC=∠BCA,∴BA=BC=1,∵AD=2BC=2,∴sin∠ADB=,∠ADB=30°,∴∠DAC=30°,∠ADC=60°.在RT△ACD中,AD=2,CD=1,AC=.考点:平行线性质,菱形判定,直角三角形斜边中线定理.23.如图,在平面直角坐标系中,函数的图象与直线交于点.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点.①当时,判断线段与的数量关系,并说明理由;②若,结合函数的图象,直接写出的取值范围.【答案】(1)见解析.(2)0<n≤1或n≥3.【解析】试题分析:(1)先求A点坐标,在代入,即可求出结果;(2)①令y=1,求出PM的值,令x=1求出PN的值即可;(3)过点P作平行于x轴的直线,利用图象可得出结果.试题解析:(1)∵函数(x>0)的图象与直线y=x-2交于点A(3,m)∴m=3-2=1,把A(3,1)代入得,k=3×1=3.即k的值为3,m的值为1.考点:直线、双曲线的函数图象24.如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.(1)求证:;(2)若,求的半径.【答案】(1)见解析;(2)【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC⊥OA,∴∠1+∠3=90°,∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门 甲 0 0 1 11 7 1乙 (说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门 平均数 中位数 众数甲 78.3 77.5 75乙 78 80.5 81得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【答案】a.240,b.乙;见解析.按如下分数段整理按如下分数段整理数据:成绩人数部门 甲 0 0 1 11 7 1乙 1 0 0 7 10 2a.估计乙部门生产技能优秀的员工人数为400×=240(人);??b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.考点:众数,中位数.26.如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表: 0 1 2 3 4 5 6 0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为____________.【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一)【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)见解析,(3)2.2(答案不唯一)试题解析:(1)1.6(2)如图所示:(3)作y=x与函数图象交点即为所求.2.2(答案不唯一)考点:函数图象,估算,近似数27.在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点.(1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.【答案】(1)y=-x+3;(2)7<<8.【解析】试题分析:(1)先求A、B、C的坐标,用待定系数法即可求解;(2)由于垂直于y轴的直线l与抛物线要保证,则P、Q两点必位于x轴下方,作出二次函数与一次函数图象,找出两条临界直线,为x轴和过顶点的直线,继而求解.(2).由,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2,∵,∴+=4.令y=-1,y=-x+3,x=4.∵,∴3<<4,即7<<8,∴的取值范围为:7<<8.考点:二次函数与x轴的交点问题,待定系数法求函数解析式,二次函数的对称性.28.在等腰直角中,,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.【答案】(1)试题解析:(1)∠AMQ=45°+.理由如下:∵∠PAC=,△ACB是等腰直角三角形,∴∠PAB=45°-,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM=45°+.(2)线段MB与PQ之间的数量关系:PQ=MB.理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=,∴∠QAM=+45°=∠AMQ,∴AP=AQ=QM,在RT△APC和RT△QME中,∴RT△APC≌RT△QME,∴PC=ME,∴△MEB是等腰直角三角形,∴,∴PQ=MB.考点:全等三角形判定,等腰三角形性质.29.在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.(1)当的半径为2时,①在点中,的关联点是_______________.②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.【答案】(1)①,②-≤x≤-或≤x≤,(2)-2≤x≤1或2≤x≤2试题解析:(1),点与⊙的最小距离为,点与⊙的最小距离为1,点与⊙的最小距离为,∴⊙的关联点为和.②根据定义分析,可得当直线y=-x上的点P到原点的距离在1到3之间时符合题意;∴设点P的坐标为P(x,-x),?当OP=1时,由距离公式可得,OP=,解得,当OP=3时,由距离公式可得,OP=,,解得,∴点的横坐标的取值范围为-≤x≤-或≤x≤如图2,当圆与小圆相切时,切点为D,∴CD=1,?如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点B时,连接BC,此时BC=3,在Rt△OCB中,由勾股定理得OC=,C点坐标为(2,0).∴C点的横坐标的取值范围为2≤≤2;?∴综上所述点C的横坐标的取值范围为-≤≤-或≤≤.考点:切线,同心圆,一次函数,新定义.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。