资源资源简介:
免费【真题】2017年南京市中考数学试题含考点分类汇编详解第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.21世纪教育网版权所有1.计算12+(-18)÷(-6)-(-3)×2的结果是()A.7B.8C.21D.36【答案】C考点:有理数的混合运算2.计算的结果是()A.B.C.D.【答案】C【解析】试题分析:根据乘方的意义及幂的乘方,可知=.故选:C考点:同底数幂相乘除3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【答案】D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.2·1·c·n·j·y故选:D考点:几何体的形状4.若,则下列结论中正确的是()A.B.C.D.【答案】B【解析】试题分析:根据二次根式的近似值可知,而,可得1<a<4.故选:B考点:二次根式的近似值5.若方程的两根为和,且,则下列结论中正确的是()A.是19的算术平方根B.是19的平方根C.是19的算术平方根D.是19的平方根【答案】C考点:平方根6.过三点(2,2),(6,2),(4,5)的圆的圆心坐标为()A.(4,)B.(4,3)C.(5,)D.(5,3)【版权所有:21教育】【答案】A【解析】试题分析:根据题意,可知线段AB的线段垂直平分线为x=4,然后由C点的坐标可求得圆心的横坐标为x=4,然后设圆的半径为r,则根据勾股定理可知,解得r=,因此圆心的纵坐标为,因此圆心的坐标为(4,).21*cnjy*com故选:A考点:1、线段垂直平分线,2、三角形的外接圆,3、勾股定理第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.计算:;.【答案】3,3【解析】试题分析:根据绝对值的性质,可知|-3|=3,根据二次根式的性质,可知.故答案为:3,3.考点:1、绝对值,2、二次根式的性质8.2016年南京实现约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是.【答案】1.05×104考点:科学记数法的表示较大的数9.若式子在实数范围内有意义,则的取值范围是.【答案】x≠1【解析】试题分析:根据分式有意义的条件,分母不为0,可知x-1≠0,解得x≠1.故答案为:x≠1.考点:分式有意义的条件10.计算的结果是.【答案】6【解析】试题分析:根据二次根式的性质化简后合并同类二次根式可得==.故答案为:.考点:合并同类二次根式11.方程的解是.【答案】x=2考点:解分式方程12.已知关于的方程的两根为-3和-1,则;.【答案】4,3【解析】试题分析:根据一元二次方程的根与系数的关系,可知p=-(-3-1)=4,q=(-3)×(-1)=3.故答案为:4,3.考点:一元二次方程的根与系数的关系13.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.21·世纪*教育网【答案】2016,2015【解析】试题分析:根据条形统计图可知私家车拥有最多的年份为2016年,由折线统计图可知2015年的私家车的拥有量增长率最高.故答案为:2016,2015.考点:1、条形统计图,2、折线统计图14.如图,是五边形的一个外角,若,则.【答案】425考点:1、多边形的内角和,2、多边形的外角15.如图,四边形是菱形,⊙经过点,与相交于点,连接,若,则.21cnjyvvvvv【答案】27【解析】试题分析:根据菱形的性质可知AD=DC,AD∥BC,因此可知∠DAC=∠DCA,,然后根据三角形的内角和为180°,可知∠DAC=51°,即∠ACE=51°,然后根据等弧所对的圆周角可知∠DAE=∠D=78°,因此可求得∠EAC=78°-51°=27°.故答案为:27.考点:1、菱形的性质,2、圆周角的性质,3、三角形的内角和16.函数与的图像如图所示,下列关于函数的结论:①函数的图像关于原点中心对称;②当时,y随x的增大而减小;③当时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是.【答案】①③考点:一次函数与反比例函数三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.计算.【答案】【解析】试题分析:根据分式的混合运算的法则,可先算括号里面的(通分后相加减),然后把除法转化为乘法,再约分化简即可.试题解析:.考点:分式的混合运算18.解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是______.(2)解不等式③,得.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.【答案】【解析】试题分析:分别求解两个不等式,系数化为1时可用性质2或性质3,然后画数轴,确定其公共部分,得到不等式组的解集.21教育名师原创作品考点:解不等式19.如图,在中,点分别在上,且相交于点.求证.【答案】证明见解析试题解析:∵四边形是平行四边形,∴.∴.∵,∴,即.∴.∴.考点:1、平行四边形的性质,2、全等三角形的判定与性质20.某公司共25名员工,下标是他们月收入的资料.月收入/元 45000 18000 10000 5500 4800 3400 5000 2200人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【来源:21·世纪·教育·网】【答案】(1)3400,3000.(2)利用中位数可以更好地反映这组数据的集中趋势【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数21.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1)(2)考点:概率22."直角"在初中几何学习中无处不在.如图,已知,请仿照小丽的方式,再用两种不同的方法判断是否为直角(仅限用直尺和圆规).小丽的方法如图,在上分别取点,以为圆心,长为半径画弧,交的反向延长线于点,若,则.【答案】作图见解析【解析】试题分析:方法一是根据勾股定理作图,方法二是根据直径所对的圆周角为直角画图.方法2:如图②,在上分别取点,以为直径画圆.若点在圆上,则.考点:基本作图--作直角23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买个甲种文具时,需购买个乙种文具.(1)①当减少购买一个甲种文具时,,;②求与之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?21教育网【答案】(1)①99,2②(2)甲、乙两种文具各购买了60个和80个【解析】试题分析:(1)①根据"每减少购买1个甲种文具,需增加购买2个乙种文具"可直接求解;②根据①的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.考点:1、一次函数,2、二元一次方程组24.如图,是⊙的切线,为切点.连接并延长,交的延长线于点,连接,交⊙于点.(1)求证:平分.(2)连结,若,求证.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)连接OB,根据切线的性质和角平分线的概念可证明;(2)根据角平分线的性质可证明△ODB是等边三角形,然后根据平行线的判定得证.试题解析:(1)如图,连接.∵是⊙的切线,∴,又,∴平分.又,∴是等边三角形.∴.∴.∴.∴.考点:1、圆的切线,2、角平分线的性质与判定,3、平行线的判定25.如图,港口位于港口的南偏东方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正西方向的处,它沿正北方向航行5,到达处,测得灯塔在北偏东方向上.这时,处距离港口有多远?21·cn·jy·com(参考数据:)【答案】35km【解析】试题分析:过点作,垂足为.构造直角三角形的模型,然后解直角三角形和平行线分线段成比例的定理列方程求解即可.www-2-1-cnjy-com∵,∴.∴.∴.又为的中点,∴.∴.∴.∴.∴.因此,处距离港口大约为35.考点:解直角三角形26.已知函数(为常数)(1)该函数的图像与轴公共点的个数是()A.0B.1C.2D.1或2(2)求证:不论为何值,该函数的图像的顶点都在函数的图像上.(3)当时,求该函数的图像的顶点纵坐标的取值范围.【答案】(1)D(2)证明见解析(3)试题解析:(1).(2),所以该函数的图像的顶点坐标为.把代入,得.因此,不论为何值,该函数的图像的顶点都在函数的图像上.(3)设函数.当时,有最小值0.当时,随的增大而减小;当时,随的增大而增大.又当时,;当时,.因此,当时,该函数的的图像的顶点纵坐标的取值范围是.考点:二次函数的图像与性质27.折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片(图①),使与重合,得到折痕,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点落在上的处,并使折痕经过点,得到折痕,折出,得到.2-1-c-n-j-y(1)说明是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形和等边三角形.他发现,在矩形中把经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3,另一边长为.对于每一个确定的的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4和1的直角三角形铁片,所需正方形铁片的边长的最小值为.【出处:21教育名师】【答案】(1)是等边三角形(2)答案见解析(3),,;(4)试题解析:(1)由折叠,,因此,是等边三角形.(2)本题答案不惟一,下列解法供参考.例如,如图,以点为中心,在矩形中把逆时针方向旋转适当的角度,得到;再以点为位似中心,将放大,使点的对应点落在上,得到.(3)本题答案不惟一,下列解法供参考,例如,(4).考点:1、规律探索,2、矩形的性质,3、正方形的性质,4、等边三角形
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。