当前位置:免费教育资源网论文数学论文
关键字: 所属栏目:

立体几何学习中的图形观

来源:人民教育出版社  作者:佚名  更新时间:2006-06-01 03:54:41   

.当c为直线时,c与d平行;当c为直线时,c与d异面,故选D.

五、拼图

空间基本图形由点、线、面构成,而一些特殊的图形也可以通过基本图形拼接得到.在拼图的过程中,我们会发现一些变和不变的东西,从中感悟出这个图形的特点,找出解决待求解问题的方法.

例5  给出任意的一块三角形纸片,要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种方案,并加以简要的说明.

分析:这是2002年高考立体几何题中的一部分.这个设计新颖的题目,使许多平时做惯了证明、计算题的生一筹莫展.这是一道动作题,但它不仅是简单的剪剪拼拼的动作,更重要的是一种心灵的“动作”,思维的“动作”.受题目叙述的影响,大家往往在想如何折起来?参考答案也是给了一种折的方法.那么这种方法究竟从何而来?其实逆向思维是这题的一个很好的切人点.我们思考:展开一个直三棱柱,如何还原成一个三角形?

把一个直三棱柱展开后可得到甲、乙两部分,甲内部的三角形和乙是全等的,甲的三角形外是宽相等的三个矩形.现在的问题是能否把乙分为三部分,补在甲的三个角上正好成为一个三角形(如图丙)?因为甲中三角形外是宽相等的矩形,所以三角形的顶点应该在原三角形的三条角平分线上,又由于面积要相等,所以甲中的三角形的顶点应该在原三角形的内心和顶点的连线段的中点上(如图丁).按这样的设计,剪开后可以折成一个直三棱柱.

六、变图

几何图形千变万化,在不断的变化中展示几何图形的魅力,在不断的变化中培养我们的能力,在有意无意的变化中开阔我们的思路.

例6  已知在三棱锥中,PA=a,AB=AC=2a,,求三棱锥的体积.

分析:此题的解决方法很多,但切割是不错的选择.

思路1 设D为AB的中点,依题意有:,所以有:

          

此解法实际上是把三棱锥一分为二,三棱锥B-PAD的底面是直角三角形,高就是BD,从而大大简化了计算.这种分割的方法也是立体几何解题中的一种重要策略.它化复杂为简单,化未知为已知.

思路2   从点A出发的三条棱两两夹角为

上一页  [1] [2] [3] [4]  下一页


文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论
精彩推荐