资源资源简介:
2017年江苏省扬州市中考数学二模试卷含答案解析2016年江苏省扬州市中考数学二模试卷一、选择题(本题共24分,每小题3分,下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填涂在答题卡中相应的位置上)1.下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.2.在"2015高淳国际马拉松赛"中,有来自肯尼亚、韩国、德国等16个国家和地区约10100名马拉松爱好者参加,将10100用科学记数法可表示为()A.10.1×103B.1.01×104C.1.01×105D.0.101×1043.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a64.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°5.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A.x>﹣1B.x>2C.x<﹣1D.x<26.下列四个几何体中,主视图与其它三个不同的是()A.B.C.D.7.如图,点C是⊙O上的动点,弦AB=4,∠C=45°,则S△ABC的最大值是()A.+4B.8C.+4D.4+48.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为()A.2B.3C.4D.5二、填空题(本题共10小题,每小题3分,共30分)9.若代数式有意义,则x的取值范围是.10.分解因式:x3﹣4x=.11.一组数据3,2,x,2,6,3的唯一众数是2,则这组数据的中位数为.12.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是.13.甲、乙两台机器分别罐装每瓶质量为500克的矿泉水.从甲、乙罐装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:S甲2=4.8,S乙2=3.6.那么罐装的矿泉水质量比较稳定.14.已知m2+m﹣1=0,则m3+2m2+2014=.15.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是cm2.16.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连结ME、MD、ED.设AB=4,∠DBE=30°,则△EDM的面积为.17.若关于x的不等式组有解,则实数a的取值范围是.18.如图,己知△ABC中,∠C=90°,∠A=30°,AC=.动点D在边AC上,以BD为边作等边△BDE(点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E移动的路线长为.三、解答题(本题共96分,第19~22题,每小题8分,第23-26题每小题8分,第27-28题每小题8分)19.计算:tan60°﹣()﹣1+(1﹣)0+|﹣2|.20.先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.21.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?22.某市举办中学生足球赛,初中男子组共有市直学校的A、B两队和县区学校的e、f、g、h四队报名参赛,六支球队分成甲、乙两组,甲组由A、e、f三队组成,乙组由B、g、h三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1)在甲组中,首场比赛抽到e队的概率是;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.23.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.24.某文化用品商店用1000元购进一批"晨光"套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?25.如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tan∠ABC=,tan∠AEC=,求圆的直径.26.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,点D、B分别在x轴和y轴上,且D(8,0),B(0,6),点A在BD边上,且AB=2.试在x轴上找一点C,使ABOC是对等四边形,请直接写出所有满足条件的C点坐标.27.从M地到N地有一条普通公路,总路程为120km;有一条高速公路,总路程为126km.甲车和乙车同时从M地开往N地,甲车全程走普通公路,乙车先行驶了另一段普通公路,然后再上高速公路.假设两车在普通公路和高速公路上分别保持匀速行驶,其中在普通公路上的行车速度为60km/h,在高速公路上的行车速度为100km/h.设两车出发xh时,距N地的路程为ykm,图中的线段AB与折线ACD分别表示甲车与乙车的y与x之间的函数关系.(1)填空:a=,b=;(2)求线段AB、CD所表示的y与x之间的函数关系式;(3)两车在何时间段内离N地的路程之差达到或超过30km?28.已知,在平面直角坐标系中,点P(0,2),以P为圆心,OP为半径的半圆与y轴的另一个交点是C,一次函数y=﹣x+m(m为实数)的图象为直线l,l分别交x轴,y轴于A,B两点,如图1.(1)B点坐标是(用含m的代数式表示),∠ABO=°;(2)若点N是直线AB与半圆CO的一个公共点(两个公共点时,N为右侧一点),过点N作⊙P的切线交x轴于点E,如图2.①是否存在这样的m的值,使得△EBN是直角三角形?若存在,求出m的值;若不存在,请说明理由.②当=时,求m的值.2016年江苏省扬州市中考数学二模试卷参考答案与试题解析一、选择题(本题共24分,每小题3分,下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填涂在答题卡中相应的位置上)1.下面的数中,与﹣2的和为0的是()A.2B.﹣2C.D.【考点】有理数的加法.【分析】设这个数为x,根据题意可得方程x+(﹣2)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣2)=0,x﹣2=0,x=2,故选:A.2.在"2015高淳国际马拉松赛"中,有来自肯尼亚、韩国、德国等16个国家和地区约10100名马拉松爱好者参加,将10100用科学记数法可表示为()A.10.1×103B.1.01×104C.1.01×105D.0.101×104【考点】科学记数法-表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10100=1.01×104,故选:B.3.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【考点】幂的乘方与积的乘方.【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进行计算即可.【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故选D.4.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.5.从下列不等式中选择一个与x+1≥2组成不等式组,如果要使该不等式组的解集为x≥1,那么可以选择的不等式可以是()A.x>﹣1B.x>2C.x<﹣1D.x<2【考点】不等式的解集.【分析】首先计算出不等式x+1≥2的解集,再根据不等式的解集确定方法:大大取大可确定另一个不等式的解集,进而选出答案.【解答】解:x+1≥2,解得:x≥1,根据大大取大可得另一个不等式的解集一定是x不大于1.故选:A.6.下列四个几何体中,主视图与其它三个不同的是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:A、的主视图是第一层两个小正方形,第二层左边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左两个小正方形,故选:D.7.如图,点C是⊙O上的动点,弦AB=4,∠C=45°,则S△ABC的最大值是()A.+4B.8C.+4D.4+4【考点】圆周角定理.【分析】过点O作OE⊥AB于点E,OE的反向延长线交⊙O于点D,连接OA,OB,根据圆周角定理求出∠AOB=90°,由勾股定理求出OA的长,根据垂径定理求出AE的长,进而可得出OE的长,根据三角形的面积公式即可得出结论.【解答】解:过点O作OE⊥AB于点E,OE的反向延长线交⊙O于点D,连接OA,OB,∵AB是定值,∴DE越长,则△ABC的面积越大.∵∠C=45°,∴∠AOB=90°,∴△OAB是等腰直角三角形,∴OA=2.∵OE⊥AB,∴AE=2,∴OE===2,∴DE=2+2,∴当点C于点D重合时,△ABC的面积最大,即S△ABC=ABoDE=×4×(2+2)=4+4.故选D.8.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为()A.2B.3C.4D.5【考点】正方形的性质;全等三角形的判定与性质.【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故选A.二、填空题(本题共10小题,每小题3分,共30分)9.若代数式有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.【解答】解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.10.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).11.一组数据3,2,x,2,6,3的唯一众数是2,则这组数据的中位数为2.5.【考点】众数;中位数.【分析】根据题意求出x的值,然后根据中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,选出正确答案即可.【解答】解:∵一组数据3,2,x,2,6,3的唯一众数是2,∴x=2,∴中位数是=2.5.故答案为:2.5.12.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是(0,﹣3).【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】直接利用关于原点对称点的性质得出对应点,再利用平移的性质得出答案.【解答】解:∵点(﹣2,3)关于原点的对称点为:(2,﹣3),∴(2,﹣3)再向左平移2个单位长度得到的点的坐标是:(0,﹣3).故答案为:(0,﹣3).13.甲、乙两台机器分别罐装每瓶质量为500克的矿泉水.从甲、乙罐装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:S甲2=4.8,S乙2=3.6.那么乙罐装的矿泉水质量比较稳定.【考点】方差.【分析】方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.【解答】解:因为4.8>3.6,所以S甲2>S乙2,所以乙罐装的矿泉水质量比较稳定.故填乙.14.已知m2+m﹣1=0,则m3+2m2+2014=2015.【考点】因式分解的应用.【分析】先将m2+m﹣1=0变换为m2+m=1.再提取公因式m,将m2+m作为一个整体直接代入计算.【解答】解:∵m2+m﹣1=0,∴m2+m=1,∴m3+2m2+2014=m(m2+m)+m2+2014=m2+m+2014=1+2014=2015.故答案为:2015.15.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是240πcm2.【考点】圆锥的计算.【分析】易得圆锥的底面周长,利用侧面积公式可得扇形纸片的面积.【解答】解:∵圆锥的底面周长为20π,∴扇形纸片的面积=×20π×24=240πcm2.故答案为240π.16.已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连结ME、MD、ED.设AB=4,∠DBE=30°,则△EDM的面积为.【考点】相似三角形的判定与性质.【分析】由条件知△ABE,三角形ADB是直角三角形,且EM,DM分别是它们斜边上的中线,证明∠EMD=2∠DAC=60°,从而可得三角形DME是边长为2的等边三角形可得到问题答案.【解答】解:∵在△ABC中,AD⊥BC,BE⊥AC,∴△ABE,△ADB是直角三角形,∴EM,DM分别是它们斜边上的中线,∴EM=DM=AB,∵ME=AB=MA,∴∠MAE=∠MEA,∴∠BME=2∠MAE,同理,MD=AB=MA,∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∴∠EMD=∠BME﹣∠BMD=2∠MAE﹣2∠MAD=2∠DAC=60°,所以△DEM是边长为2的正三角形,所以S△DEM=.故答案为:.17.若关于x的不等式组有解,则实数a的取值范围是a>4.【考点】解一元一次不等式组.【分析】解出不等式组的解集,根据已知不等式组有解比较,可求出a的取值范围.【解答】解:由(1)得x>2,由(2)得x<,∵不等式组有解,∴解集应是2<x<,则>2,即a>4实数a的取值范围是a>4.故填a>4.18.如图,己知△ABC中,∠C=90°,∠A=30°,AC=.动点D在边AC上,以BD为边作等边△BDE(点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E移动的路线长为.【考点】轨迹;等边三角形的性质;含30度角的直角三角形.【分析】作EF⊥AB垂足为F,连接CF,由△EBF≌△DBC,推出点E在AB的垂直平分线上,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.【解答】解:如图,作EF⊥AB垂足为F,连接CF.∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵△EBD是等边三角形,∴BE=BD,∠EBD=60°,∴∠EBD=∠ABC,∴∠EBF=∠DBC,在△EBF和△DBC中,,∴△EBF≌△DBC,∴BF=BC,EF=CD,∵∠FBC=60°,∴△BFC是等边三角形,∴CF=BF=BC,∵BC=AB=,∴BF=AB,∴AF=FB,∴点E在AB的垂直平分线上,∴在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点A移动至点C的过程中,点E移动的路线为.故答案为:.三、解答题(本题共96分,第19~22题,每小题8分,第23-26题每小题8分,第27-28题每小题8分)19.计算:tan60°﹣()﹣1+(1﹣)0+|﹣2|.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣2+1+2﹣=1.20.先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.【考点】分式的化简求值;一元二次方程的解.【分析】先把原式化为最简形式,再利用公式法求出一元二次方程x2﹣2x﹣2=0的根,把正根代入原式计算即可.【解答】解:原式=÷=o=.解方程x2﹣2x﹣2=0得:x1=1+>0,x2=1﹣<0,所以原式==.21.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.22.某市举办中学生足球赛,初中男子组共有市直学校的A、B两队和县区学校的e、f、g、h四队报名参赛,六支球队分成甲、乙两组,甲组由A、e、f三队组成,乙组由B、g、h三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1)在甲组中,首场比赛抽到e队的概率是;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.【考点】列表法与树状图法.【分析】(1)根据甲组由A,e,f三队组成,得到抽到e队的概率;(2)列表得出所有等可能的情况数,找出首场比赛出场的两个队都是县区学校队的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:P(e队出场)=;故答案为:;(2)列表如下: A e fB (A,B) (e,B) (f,B)g (A,g) (e,g) (f,g)h (A,h) (e,h) (f,h)所有等可能的情况有9种,其中首场比赛出场的两个队都是县区学习队的有4种情况,则P=.23.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)首先证明∠1=∠2.再由BA⊥AD,BE⊥CD可得∠BAD=∠BED=90°,然后再加上公共边BD=BD可得△ABD≌△EBD;(2)首先证明四边形AFED是平行四边形,再有AD=ED,可得四边形AFED是菱形.【解答】证明:(1)如图,∵AD∥BC,∴∠1=∠DBC.∵BC=DC,∴∠2=∠DBC.∴∠1=∠2.∵BA⊥AD,BE⊥CD∴∠BAD=∠BED=90°,在△ABD和△EBD中,∴△ABD≌△EBD(AAS);(2)由(1)得,AD=ED,∠1=∠2.∵EF∥DA,∴∠1=∠3.∴∠2=∠3.∴EF=ED.∴EF=AD.∴四边形AFED是平行四边形.又∵AD=ED,∴四边形AFED是菱形.24.某文化用品商店用1000元购进一批"晨光"套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?【考点】分式方程的应用.【分析】(1)设第一批套尺购进时单价是x元/套,则设第二批套尺购进时单价是x元/套,根据题意可得等量关系:第二批套尺数量﹣第一批套尺数量=100套,根据等量关系列出方程即可;(2)两批套尺得总数量×4﹣两批套尺的总进价=利润,代入数进行计算即可.【解答】解:(1)设第一批套尺购进时单价是x元/套.由题意得:,即,解得:x=2.经检验:x=2是所列方程的解.答:第一批套尺购进时单价是2元/套;(2)(元).答:商店可以盈利1900元.25.如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线;(2)若点E是BC上一点,已知BE=6,tan∠ABC=,tan∠AEC=,求圆的直径.【考点】切线的判定;圆周角定理;锐角三角函数的定义;解直角三角形.【分析】(1)根据圆周角定理BC得到∠BDC=90°,推出∠ACD+∠DCB=90°,即BC⊥CA,即可判断CA是圆的切线;(2)根据锐角三角函数的定义得到tan∠AEC=,tan∠ABC=,推出AC=EC,BC=AC,代入BC﹣EC=BE即可求出AC,进一步求出BC即可.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ABC+∠DCB=90°,∵∠ACD=∠ABC,∴∠ACD+∠DCB=90°,∴BC⊥CA,∴CA是圆的切线.(2)解:在Rt△AEC中,tan∠AEC=,∴=,EC=AC,在Rt△ABC中,tan∠ABC=,∴=,BC=AC,∵BC﹣EC=BE,BE=6,∴,解得:AC=,∴BC=×=10,答:圆的直径是10.26.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,点D、B分别在x轴和y轴上,且D(8,0),B(0,6),点A在BD边上,且AB=2.试在x轴上找一点C,使ABOC是对等四边形,请直接写出所有满足条件的C点坐标.【考点】圆的综合题.【分析】(1)根据对等四边形的定义画出图形即可;(2)根据圆周角定理得到∠ADB=90°,∠ACD=90°,根据直角三角形全等的判定定理证明Rt△ADB≌Rt△BCA,根据全等三角形的性质证明即可;(3)分OC=AB、AC=OB两种情况,根据平行线分线段成比例定理计算即可.【解答】解:(1)如图1:四边形ABCD为对等四边形;(2)证明:∵AB是⊙O的直径,∴∠ADB=90°,∠ACD=90°,在Rt△ADB和Rt△BCA中,,∴Rt△ADB≌Rt△BCA,∴AD=BC,∴四边形ABCD是对等四边形;(3)∵D(8,0),B(0,6),∴OD=8,OB=6,∴BD==10,∵AB=2,∴AD=8,如图3,当OC=AB时,C点坐标为(2,0),如图4,当AC=OB时,AC=6,作AE⊥OD于E,则AE∥OB,∴==,即==,解得AE=,DE=,∴EC==,OE=OD﹣DE=,则OC=OE+EC=,∴C点坐标为(,0),∴四边形ABOC为对等四边形时,C点坐标为:(2,0)或(,0).27.从M地到N地有一条普通公路,总路程为120km;有一条高速公路,总路程为126km.甲车和乙车同时从M地开往N地,甲车全程走普通公路,乙车先行驶了另一段普通公路,然后再上高速公路.假设两车在普通公路和高速公路上分别保持匀速行驶,其中在普通公路上的行车速度为60km/h,在高速公路上的行车速度为100km/h.设两车出发xh时,距N地的路程为ykm,图中的线段AB与折线ACD分别表示甲车与乙车的y与x之间的函数关系.(1)填空:a=1.36,b=2;(2)求线段AB、CD所表示的y与x之间的函数关系式;(3)两车在何时间段内离N地的路程之差达到或超过30km?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)求出C坐标,再根据时间=分别求出甲车在普通公路上行驶的时间及乙车在高速公路上行驶的时间,可得a、b的值;(2)根据A、B、C、D四点坐标待定系数法求解可得线段AB、CD所表示的y与x之间的函数关系式;(3)分类讨论:当0<x<0.1时,由解析式可知甲、乙两车距离差最大为12;当0.1≤x<1.36时,由y1﹣y2≥30列不等式可得x的范围;当1.36≤x≤2时,由y1≥30列不等式可得此时x的范围,综合以上三种情况可得答案.【解答】解:(1)根据题意,知:点C的坐标为(0.1,126),∴a=0.1+=1.36,b==2,故答案为:1.36,2.(2)设线段AB所表示的y与x之间的函数关系式分别为y1=k1x+b1,将A(0,120)、B(2,0)的坐标代入得:,解得:,∴y1=﹣60x+120;设线段CD所表示的y与x之间的函数关系式分别为y2=k2x+b2,将C(0.1,126)、D(1.36,0)的坐标代入得:,解得:,∴y2=﹣100x+136.(3)由题意,①当x=0.1时,两车离N地的路程之差是12km,∴当0<x<0.1时,两车离N地的路程之差不可能达到或超过30km.②当0.1≤x<1.36时,由y1﹣y2≥30,得(﹣60x+120)﹣(﹣100x+136)≥30,解得x≥1.15.即当1.15≤x<1.36时,两车离N地的路程之差达到或超过30km.③当1.36≤x≤2时,由y1≥30,得﹣60x+120≥30,解得x≤1.5.即当1.36≤x≤1.5时,两车离N地的路程之差达到或超过30km.综上,当1.15≤x≤1.5时,两车离N地的路程之差达到或超过30km.28.已知,在平面直角坐标系中,点P(0,2),以P为圆心,OP为半径的半圆与y轴的另一个交点是C,一次函数y=﹣x+m(m为实数)的图象为直线l,l分别交x轴,y轴于A,B两点,如图1.(1)B点坐标是(m,0)(用含m的代数式表示),∠ABO=30°;(2)若点N是直线AB与半圆CO的一个公共点(两个公共点时,N为右侧一点),过点N作⊙P的切线交x轴于点E,如图2.①是否存在这样的m的值,使得△EBN是直角三角形?若存在,求出m的值;若不存在,请说明理由.②当=时,求m的值.【考点】圆的综合题.【分析】(1)首先求出直线与x轴交点坐标,进而得出答案,再利用锐角三角函数关系得出∠ABO的度数;(2)①分别利用∠NEB=90°和∠ENB=90°,结合切线的性质得出m的值;②首先求出NG:EN=,再得出△PHN∽△NGE,再利用相似三角形的性质,进而得出m的值.【解答】解:(1)当y=0,则0=﹣x+m,解得:x=m,故B点坐标是(用含m的代数式表示),∵一次函数y=﹣x+m与y轴交于点(0,m),∴tan∠ABO==,∴∠ABO=30°;故答案为:(m,0),30;(2)①如图①,假设存在这样的m的值,使得△EBN是直角三角形.连接NP若∠NEB=90°,∵NE是⊙P的切线,∴∠PNE=90°,∵∠POE=90°,∴四边形OPNE是矩形,∴PN=2,∠APN=90°,在Rt△APN中,PN=2,∠BAO=60°,∴PA=1,∴m=3,若∠ENB=90°,∵NE是⊙P的切线,∴∠PNE=90°,∴点P、N、B三点共线,即点P与点A重合,∴m=2,综上可知,m=2或3;②如图②,连接PN,过点E作,EG⊥AB于G,过点P作,PH⊥AB于H,则PA=m﹣2,PH=,∵=,∴EB=,EN=EO=,EG=,∴EG:EN=1:4,∴NG:EN=,∵∠PNE=90°,∴∠PNH+∠ENG=90°,∵∠GNE+∠NEG=90°,∴∠NEG=∠PNH,∵∠PHN=∠EGN=90°,∴△PHN∽△NGE,∴=,∴=,解得:m=.2016年7月5日
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。