资源资源简介:
免费安徽省合肥市庐阳区2018年中考数学一模试卷含答案试卷分析详解2018年安徽省合肥市庐阳区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)计算(﹣2x2)3的结果是()A.﹣8x6 B.﹣6x6 C.﹣8x5 D.﹣6x53.(4分)如图所示的工件,其俯视图是()A. B. C. D.4.(4分)2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800×104 B.6.8×104 C.6.8×107 D.0.68×1085.(4分)不等式组的解集在数轴上表示正确的是()A. B. C. D.6.(4分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15° B.20° C.25° D.30°7.(4分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=08.(4分)某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A.(1﹣20%)(1+x)2=1+15% B.(1+15%%)(1+x)2=1﹣20%C.2(1﹣20%)(1+x)=1+15% D.2(1+15%)(1+x)=1﹣20%9.(4分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B. C. D.10.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()A.2 B.2 C.4 D.4二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)9的平方根是.12.(5分)分解因式:a3﹣2a2+a=.13.(5分)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.14.(5分)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.三、解答题(本大题共2小题,共计68分)15.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.16.(8分)《九章算术》"勾股"章有一题:"今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何".大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.18.(8分)观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1②1+2==3③1+2+3==6④…(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.1=12②1+3=22③3+6=32④6+10=42⑤…[来源:学科网](3)通过猜想,写出(2)中与第n个点阵相对应的等式.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(10分)已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AMoMB=EMoMC;(2)求EM的长;(3)求sin∠EOB的值.六、解答题(本题满分12分)21.(12分)为大力弘扬"奉献、友爱、互助、进步"的志愿服务精神,传播"奉献他人、提升自我"的志愿服务理念,合肥市某中学利用周末时间开展了"助老助残、社区服务、生态环保、网络文明"四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应的圆心角的度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.七、解答题(本题满分12分)22.(12分)某旅行社推出一条成本价位500元/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;(2)求经营这条旅游线路每月所需要的最低成本;(3)档这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?八、解答题(本题满分14分)23.(14分)已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.2018年安徽省合肥市庐阳区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【解答】解:﹣2的绝对值是:2.故选:B.2.【解答】解:(﹣2x2)3=(﹣2)3o(x2)3=﹣8x6.故选:A.3.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.4.【解答】解:6800万用科学记数法表示为6.8×107.故选:C.5.【解答】解:,由①得:x<1;由②得:x≤4,则不等式组的解集为x<1,表示在数轴上,如图所示故选:C.6.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.7.【解答】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.8.【解答】解:设三、四月份的月平均增长率是x,一月份产值为"1".根据题意得,(1﹣20%)(1+x)2=1+15%,[来源:学科网ZXXK]故选:A.9.【解答】解:A.由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B.由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C.由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D.由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象符合,故D选项正确.故选:D.10.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABoCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,[来源:Zxxk.Com]∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故选:B.二、填空题(本大题共4小题,每小题5分,共20分)11.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.13.【解答】解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.14.【解答】解:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折的性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,在Rt△CEF中,EF2+CF2=CE2,即x2+42=(8﹣x)2,解得x=3,即BE=3;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE的长为3或6.故答案为:3或6.三、解答题(本大题共2小题,共计68分)15.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.16.【解答】解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x﹣10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x﹣10)2=102+(3x)2,∴x=0(舍去)或x=3.5,∴AB=3x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.四、解答题(本大题共2小题,每小题8分,共16分)17.【解答】解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).18.【解答】解:(1)根据题中所给出的规律可知:;(2)由图示可知点的总数是5×5=25,所以10+15=52.(3)由(1)(2)可知.五、解答题(本大题共2小题,每小题10分,共20分)19.【解答】解:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.20.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AMoBM=EMoCM;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AMoBM=EMoCM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、解答题(本题满分12分)21.【解答】解:(1)该班全部人数:12÷25%=48人.社区服务的人数为48×50%=24,补全折线统计如图所示:(2)网络文明部分对应的圆心角的度数为360°×=45°;(3)分别用A,B,C,D表示"社区服务、助老助残、生态环保、网络文明"四个服务活动,画树状图得:∵共有16种等可能的结果,他们参加同一服务活动的有4种情况,[来源:Z§xx§k.Com]∴他们参加同一服务活动的概率为.七、解答题(本题满分12分)22.【解答】解:(1)由题意得y<200时,即﹣x+1300<200,解得:x>1100,即该旅游线路报价的取值范围为1100元/人~1200元/人之间;(2)设经营这条旅游线路每月所需要的成本为z,∴z=500(﹣x+1300)=﹣500x+650000,∵﹣500<0,∴当x=1200时,z最低,即z=50000;(3)设经营这条旅游线路的总利润为w,则w=(x﹣500)(﹣x+1300)=﹣x2+1800x﹣650000=﹣(x﹣900)2+160000,当x=900时,w最大=160000.八、解答题(本题满分14分)23.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中∴△ADC≌△ABC,∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△ADC≌△ABC,∴∠ADC=∠B,∵CF=CB,[来源:学科网]∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,∵四边形AFCD的内角和等于360°,∴∠DCF+∠DAF=180°,∵CD=CF,∴∠CDG=∠CFD,∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,∵∠DAB=2∠DAC,∴∠CDG=∠DAC,∵∠DCG=∠ACD,∴△DGC∽△ADC;(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,=,∵∠ADC=2∠HAG,AD=3,DC=2,∴∠HAG=∠DGC,=,∴∠HAG=∠AHG,=,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∞△AGF,∴==,∴=.
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。