资源资源简介:
2019年人教版中考数学一轮复习《勾股定理》同步练习含试卷分析答题技巧2019年中考数学一轮复习勾股定理一 、选择题1.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b﹣2c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形2.点A(-3,-4)到原点的距离为()A.3 B.4 C.5 D.73.已知直角三角形的两边分别为3和4,则第三边为()A.5 B. C.5或 D.44.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为()5.若三边长满足,则是()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形6.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.27.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米 B.米 C.(+1)米 D.3米8.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则()A.∠A为直角 B.∠C为直角 C.∠B为直角 D.不是直角三角形9.有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A.cm B.cm C.cm D.cm10.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中SA=10,SB=8,SC=9,SD=4,则S=()A.25 B.31 C.32 D.4011.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.512.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A. B.2 C. D.10﹣5二 、填空题13.如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以A为圆心,以AC为半径画弧,交AB于D,则扇形CAD的周长是(结果保留π)14.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.15.直角三角形的两直角边的长分别为6cm、8cm,则斜边上高的长是cm.16.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是17.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.18.在平面直角坐标系中,已知点A(0,2)、B(4,1),点P在x轴上,则PA+PB的最小值是____________。三 、解答题19.如图,要修建一个育苗棚,棚高h=1.8m,棚宽a=2.4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?20.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm.求CD的长.21.如图,在笔直的某公路上有A.B两点相距50km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?22.如果一个长为10m的梯子,斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,请猜测梯子底端滑动的距离是否会超过1m,并加以说明.23.在寻找马航MH370航班过程中,两艘搜救舰艇接到消息,在海面上有疑似漂浮目标A.B.接到消息后,一艘舰艇以16海里/时的速度离开港口O(如图所示)向北偏东40°方向航行,另一艘舰艇在同时以12海里/时的速度向北偏西一定角度的航向行驶,已知它们离港口一个半小时后相距30海里,问另一艘舰艇的航行方向是北偏西多少度?24.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?25.如图,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.26.如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.参考答案1.B.2.C3.C4.C5.C6.D7.C8.A9.C.10.B.11.A.12.解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.13.答案为:+2.14.答案是:8.15.答案为:4.8.16.答案为:﹣.17.答案为2.5秒.18.答案为:5;19..解:在直角三角形中,由勾股定理可得:直角三角形的斜边长为3m,所以矩形塑料薄膜的面积是:3×12=36(m2)20.21.解:设E建在离A点Xkm处依题意得E建在离A点20km处.22.答案为:超过1m;23.解:由题意得,OB=12×1.5=18海里,OA=16×1.5=24海里,又∵AB=30海里,∵182+242=302,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=40°,∴∠BOD=50°,则另一艘舰艇的航行方向是北偏西50°.24.解:25.证明:(1)∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△AEC≌△BDC(SAS);(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.由(1)知AE=DB,∴AD2+DB2=DE2,即2CD2=AD2+DB2.26.解:根据题意得:Rt△ADE≌Rt△AEF∴∠AFE=90°,AF=10cm,EF=DE设CE=xcm,则DE=EF=CD-CE=8-x在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm∴CF=BC-BF=10-6=4(cm)在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即(8-x)2=x2+42∴64-16x+x2=x2+16∴x=3(cm),即CE=3cm
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。