资源资源简介:
2019届中考数学专题《四边形》复习练习含试卷分析答题技巧四边形一、选择题1.下列命题中,不正确的是().A.平行四边形的对角线互相平分B.矩形的对角线互相垂直且平分C.菱形的对角线互相垂直且平分D.正方形的对角线相等且互相垂直平分2.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6B.5C.8D.73.如图,在?ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是()A.45°B.55°C.65°D.75°4.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为()A.13B.15C.13或15D.15或16或175.如图,若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD6.如下图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB长为()A.20B.15C.10D.57.如图,在□ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有()A.7个B.8个C.9个D.11个8.如图,在七边形ABCDEFG中,AB,ED的延长线相交于O点.若图中∠1,∠2,∠3,∠4的角度和为220°,则∠BOD的度数为()A.40°B.45°C.50°D.60°9.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是()A.6cmB.5cmC.cmD.7.5cm10.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形二、填空题11.一个多边形对角线的数目是边数的2倍,这样的多边形的边数是________.12.如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是________13.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=________.14.如图:矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AD=________cm.15.八年级(3班)同学要在广场上布置一个矩形花坛,计划用鲜花摆成两条对角线.如果一条对角线用了20盆红花,还需要从花房运来________盆红花.如果一条对角线用了25盆红花,还需要从花房运来________盆红花.16.在正三角形、正方形、正五边形、正六边形中不能镶嵌成一个平面图案的是________.17.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为________cm2.18.梯形ABCD的底AB的长度等于底CD的2倍,也等于腰AD的2倍,设对角线AC的长为3,腰BC的长为4,则梯形ABCD的高为________.19.如图,在?ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是________.(结果保留π)20.如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE和等边△ADF,分别连接CE、CF和EF,则下列结论中一定成立的是________(把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、解答题21.如图,已知?ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.22.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且AB=FC,E为AD上一点,EC交AF于点G,EA=EG.求证:ED=EC.23.如图,平行四边形ABCD的对角线AC和BD相交于点O,E,F分别为OB,OD的中点,过点O任作一直线分别交AB,CD于点G,H.试说明:GF∥EH.24.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=12,求DE的长及四边形ADEF的面积.25.如图,正方形ABCD的边长为8cm,E、F、G分别是AB、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,说明理由;(3)求四边形EFGH面积的最小值.26.如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.(1)如果∠B+∠C=120°,则∠AED的度数=________.(直接写出结果)(2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,并证明.27.如图1,△ABD和△BDC都是边长为1的等边三角形。(1)四边形ABCD是菱形吗?为什么?(2)如图2,将△BDC沿射线BD方向平移到△B1D1C1的位置,则四边形ABC1D1是平行四边形吗?为什么?(3)在△BDC移动过程中,四边形ABC1D1有可能是矩形吗?如果是,请在图3中画出四边形ABC1D1为矩形时的图形,并直接写出点B移动的距离(不要求写出过程);如果不是,请说明理由。参考答案一、选择题1.B2.B3.A4.D5.C6.D7.C8.A9.B10.D二、填空题11.712.BE=DF(答案不唯一)13.3或714.415.19;2416.正五边形17.96cm218.19.12﹣π20.①②③三、解答题21.证明:∵四边形ABCD为平行四边形,∴AD∥BC∠BAD=∠BCD,∴AF∥EC,∴∠DAE=∠AEB,∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=∠BAD,∠FCB=∠BCD,∴∠DAE=∠FCB=∠AEB,∴AE∥FC,∴四边形AECF为平行四边形,∴AF=CE22.解:证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.∴∠AFC=90°,∴∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.∵EA=EG,∴∠EAG=∠EGA.∵∠EGA=∠CGF,∴∠DAF=∠CGF.∴∠D=∠ECD.∴ED=EC23.证明:连结EG,FH,由□ABCD得OA=OC,OB=OD,又OE=OB,OF=OD,∴OE=OF,再证△AOG≌△COH得OG=OH,∴四边形EHFG是平行四边形,∴GF∥EH.24.(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)解:如图,过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×12=6,∵BE=DE,∴BH=DH=BD=6,∴BE==.∴DE=BE=,∴四边形ADEF的面积为:DEoDG=.25.(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=DA,∵AE=DH,∴BE=AH,∴△AEH≌△BFE,∴EH=FE,∠AHE=∠BEF,同理:FE=GF=HG,∴EH=FE=GF=HG,∴四边形EFGH是菱形,∵∠A=90°,∴∠AHE+∠AEH=90°,∴∠BEF+∠AEH=90°,∴∠FEH=90°,∴菱形EFGH是正方形;(2)解:直线EG经过正方形ABCD的中心,理由如下:连接BD交EG于点O,∵四边形ABCD是正方形,∴AB∥DC,AB=DC∴∠EBD=∠GDB,∵AE=CG,∴BE=DG,∵∠EOB=∠GOD,∴△EOB≌△GOD,∴BO=DO,即点O为BD的中点,∴直线EG经过正方形ABCD的中心;(3)解:设AE=DH=x,则AH=8-x,在Rt△AEH中,EH2=AE2+AH2=x2+(8-x)2=2x2-16x+64=2(x-4)2+32,∴四边形EFGH面积的最小值为32cm?.26.(1)60°(2)解:∠AED=(∠B+∠C).理由如下:在四边形ABCD中,∵∠BAD+∠CDA+∠B+∠C=360°,∴∠BAD+∠CDA=360°﹣(∠B+∠C),又∵AE平分∠BAD,DE平分∠ADC,∴∠EAD=∠BAD,∠EDA=∠ADC,∴∠EAD+∠EDA=∠BAD+∠ADC=[360°﹣(∠B+∠C)],在△AED中,又∵∠AED=180°﹣(∠EAD+∠EDA),=180°﹣[360°﹣(∠B+∠C)],=(∠B+∠C),故∠AED=(∠B+∠C).27.(1)解:四边形ABCD是菱形理由如下:∵△ABD和△BDC都是边长为1的等边三角形。∴AB=AD=CD=BC=DB,∴AB=AD=CD=BC,∴四边形ABCD是菱形(2)解:四边形ABC1D1是平行四边形理由:∵∠ABD=∠=60°∴AB∥新网又∵AB=,∴四边形是平行四边形(3)解:四边形有可能是矩形点B移动的距离是1
Copyright © 2005-2020 Ttshopping.Net. All Rights Reserved . |
云南省公安厅:53010303502006 滇ICP备16003680号-9
本网大部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正。